Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8135, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065959

RESUMO

Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Percepção de Quorum/genética , Ácido N-Acetilneuramínico , Sistema Respiratório , Proteínas de Bactérias
3.
Inflamm Bowel Dis ; 29(1): 167-171, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36426845

RESUMO

For the first time, fecal mucins of Crohn's disease patients were analyzed by mass spectrometry. Compared with control subjects, Crohn's disease patients showed a significant decrease in sialylated glycans that we propose as new noninvasive tool for screening of intestinal diseases.


Assuntos
Doenças Inflamatórias Intestinais , Mucinas , Humanos , Mucinas/metabolismo , Glicosilação , Doenças Inflamatórias Intestinais/diagnóstico , Biomarcadores
4.
J Cyst Fibros ; 20(1): 173-182, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978064

RESUMO

BACKGROUND: Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process. METHODS: Newborn CFTR+/+ and CFTR-/- were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina. Tracheal mucosa and the bronchoalveolar lavage (BAL) fluid were collected to determine the level of mucin O-glycosylation, bacteria binding to mucins and the airways transcriptome. Disturbances in mucociliary transport were determined by ex-vivo imaging of luminescent Pseudomonas aeruginosa. RESULTS: We provide evidence of an increased sialylation of CF airway mucins and impaired mucociliary transport that occur before the onset of inflammation. Hypersialylation of mucins was reproduced on tracheal explants from non CF animals treated with GlyH101, an inhibitor of CFTR channel activity, indicating a causal relationship between the absence of CFTR expression and the sialylation of mucins. This increased sialylation was correlated to an increased adherence of P. aeruginosa to mucins. In vivo infection of newborn CF piglets by live luminescent P. aeruginosa demonstrated an impairment of mucociliary transport of this bacterium, with no evidence of pre-existing inflammation. CONCLUSIONS: Our results document for the first time in a well-defined CF animal model modifications that affect the O-glycan chains of mucins. These alterations precede infection and inflammation of airway tissues, and provide a favorable context for microbial development in CF lung that hallmarks this disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Mucinas/metabolismo , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Glicosilação , Masculino , Pseudomonas aeruginosa , Mucosa Respiratória/microbiologia , Suínos , Traqueia
5.
Proc Natl Acad Sci U S A ; 117(5): 2606-2612, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964828

RESUMO

Bacterial infections are frequently based on the binding of lectin-like adhesins to specific glycan determinants exposed on host cell receptors. These interactions confer species-specific recognition and tropism for particular host tissues and represent attractive antibacterial targets. However, the wide structural diversity of carbohydrates hampers the characterization of specific glycan determinants. Here, we characterized the receptor recognition of type IV pili (Tfp), a key adhesive factor present in numerous bacterial pathogens, using Neisseria meningitidis as a model organism. We found that meningococcal Tfp specifically recognize a triantennary sialylated poly-N-acetyllactosamine-containing N-glycan exposed on the human receptor CD147/Basigin, while fucosylated derivatives of this N-glycan impaired bacterial adhesion. Corroborating the inhibitory role of fucosylation on receptor recognition, adhesion of the meningococcus on nonhuman cells expressing human CD147 required prior defucosylation. These findings reveal the molecular basis of the selective receptor recognition by meningococcal Tfp and thereby, identify a potential antibacterial target.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Infecções Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Receptores de Superfície Celular/metabolismo , Adesinas Bacterianas/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Glicosilação , Humanos , Infecções Meningocócicas/genética , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Polissacarídeos/metabolismo , Receptores de Superfície Celular/genética
6.
mSphere ; 4(6)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801841

RESUMO

Neisseria meningitidis is an inhabitant of the nasopharynx, from which it is transmitted from person to person or disseminates in blood and becomes a harmful pathogen. In this work, we addressed colonization of the nasopharyngeal niche by focusing on the interplay between meningococci and the airway mucus that lines the mucosa of the host. Using Calu-3 cells grown in air interface culture (cells grown with the apical domain facing air), we studied meningococcal colonization of the mucus and the host response. Our results suggested that N. meningitidis behaved like commensal bacteria in mucus, without interacting with human cells or actively transmigrating through the cell layer. As a result, type IV pili do not play a role in this model, and meningococci did not trigger a strong innate immune response from the Calu-3 cells. Finally, we have shown that this model is suitable for studying interaction of N. meningitidis with other bacteria living in the nasopharynx and that Streptococcus mitis, but not Moraxella catarrhalis, can promote meningococcal growth in this model.IMPORTANCEN. meningitidis is transmitted from person to person by aerosol droplets produced by breathing, talking, or coughing or by direct contact with a contaminated fluid. The natural reservoir of N. meningitidis is the human nasopharynx mucosa, located at the back of the nose and above the oropharynx. The means by which meningococci cross the nasopharyngeal wall is still under debate, due to the lack of a convenient and relevant model mimicking the nasopharyngeal niche. Here, we took advantage of Calu-3 cells grown in air interface culture to study how meningococci colonize the nasopharyngeal niche. We report that the airway mucus is both a niche for meningococcal growth and a protective barrier against N. meningitidis infection. As such, N. meningitidis behaves like commensal bacteria and is unlikely to induce infection without an external trigger.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Fatores Imunológicos/metabolismo , Muco/metabolismo , Nasofaringe/imunologia , Nasofaringe/microbiologia , Neisseria meningitidis/imunologia , Linhagem Celular , Humanos , Modelos Teóricos , Mucosite/imunologia , Mucosite/microbiologia
7.
Front Physiol ; 9: 980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087622

RESUMO

Mucus is a major component of the intestinal barrier involved both in the protection of the host and the fitness of commensals of the gut. Streptococcus thermophilus is consumed world-wide in fermented dairy products and is also recognized as a probiotic, as its consumption is associated with improved lactose digestion. We determined the overall effect of S. thermophilus on the mucus by evaluating its ability to adhere, degrade, modify, or induce the production of mucus and/or mucins. Adhesion was analyzed in vitro using two types of mucins (from pig or human biopsies) and mucus-producing intestinal HT29-MTX cells. The induction of mucus was characterized in two different rodent models, in which S. thermophilus is the unique bacterial species in the digestive tract or transited as a sub-dominant bacterium through a complex microbiota. S. thermophilus LMD-9 and LMG18311 strains did not grow in sugars used to form mucins as the sole carbon source and displayed weak binding to mucus/mucins relative to the highly adhesive TIL448 Lactococcus lactis. The presence of S. thermophilus as the unique bacteria in the digestive tract of gnotobiotic rats led to accumulation of lactate and increased the number of Alcian-Blue positive goblet cells and the amount of the mucus-inducer KLF4 transcription factor. Lactate significantly increased KLF4 protein levels in HT29-MTX cells. Introduction of S. thermophilusvia transit as a sub-dominant bacterium (103 CFU/g feces) in a complex endogenous microbiota resulted in a slight increase in lactate levels in the digestive tract, no induction of overall mucus production, and moderate induction of sulfated mucin production. We thus show that although S. thermophilus is a poor mucus-adhesive bacterium, it can promote mucus pathway at least in part by producing lactate in the digestive tract.

8.
PLoS One ; 13(6): e0197808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856782

RESUMO

INTRODUCTION: The pro-inflammatory status of cystic fibrosis (CF) patients promotes pulmonary colonization with opportunist and pathogenic bacteria, which is favored by a sticky mucus. Oral supplementation with (n-3) long chain polyunsaturated fatty acids (LC-PUFA) has shown anti-inflammatory effects. The aim of this study was to demonstrate the positive effects of a long-term diet enriched in (n-3) LC-PUFA on the lungs of Cftr F508del mice. MATERIALS AND METHODS: Breeding CftrΔF508del/+ mice received a control diet or a diet enriched in (n-3) LC-PUFA for 5 weeks before mating, gestation and lactation. After weaning, the offspring were given the same diet as their mother until post-natal day 60. The effects of (n-3) LC-PUFA supplementation on the lungs were evaluated in homozygous Cftr F508del mice and their wild-type littermates after acute lung inflammation induced by Pseudomonas aeruginosa lipopolysaccharide (LPS) inhalation. RESULTS: (n-3) LC-PUFA enrichment of mothers contributes to enrichment of mammary milk and cell membrane of suckling pups. Cftr F508del mice exhibited growth retardation and lung damage with collapsed alveoli, hyperplasia of bronchial epithelial cells and inflammatory cell infiltration. The (n-3) LC-PUFA diet corrected the growth delay of Cftr F508del mice and decreased hyperplasia of bronchial epithelial cells. Besides decreasing metaplasia of Club cells after LPS inhalation, (n-3) LC-PUFA modulated lung inflammation and restricted lung damage. CONCLUSION: Long-term (n-3) LC-PUFA supplementation shows moderate benefits to the lungs of Cftr F508del mice.


Assuntos
Dieta , Ácidos Graxos Ômega-3/farmacologia , Pulmão/efeitos dos fármacos , Animais , Transporte Biológico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Fatores de Tempo
9.
Microorganisms ; 6(2)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844291

RESUMO

Mucus is the habitat for the microorganisms, bacteria and yeast that form the commensal flora. Mucins, the main macromolecules of mucus, and more specifically, the glycans that cover them, play essential roles in microbial gastrointestinal colonization. Probiotics and pathogens must also colonize mucus to have lasting positive or deleterious effects. The question of which mucin-harboured glycan motifs favour the adhesion of specific microorganisms remains very poorly studied. In the current study, a simple test based on the detection of fluorescent-labeled microorganisms raised against microgram amounts of mucins spotted on nitrocellulose was developed. The adhesion of various probiotic, commensal and pathogenic microorganisms was evaluated on a panel of human purified gastrointestinal mucins and compared with that of commercially available pig gastric mucins (PGM) and of mucins secreted by the colonic cancer cell line HT29-MTX. The latter two proved to be very poor indicators of adhesion capacity on intestinal mucins. Our results show that the nature of the sialylated cores of O-glycans, determined by MALDI MS-MS analysis, potentially enables sialic acid residues to modulate the adhesion of microorganisms either positively or negatively. Other identified factors affecting the adhesion propensity were O-glycan core types and the presence of blood group motifs. This test should help to select probiotics with enhanced adhesion capabilities as well as deciphering the role of specific mucin glycotopes on microbial adhesion.

10.
Biochem Soc Trans ; 45(2): 389-399, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408479

RESUMO

The gastrointestinal mucosal surface is the primary interface between internal host tissues and the vast microbiota. Mucins, key components of mucus, are high-molecular-weight glycoproteins characterized by the presence of many O-linked oligosaccharides to the core polypeptide. They play many biological functions, helping to maintain cellular homeostasis and to establish symbiotic relationships with complex microbiota. Mucin O-glycans exhibit a huge variety of peripheral sequences implicated in the binding of bacteria to the mucosal tissues, thereby playing a key role in the selection of specific species and in the tissue tropism displayed by commensal and pathogenic bacteria. Bacteria have evolved numerous strategies to colonize host mucosae, and among these are modulation of expression of cell surface adhesins which allow bacteria to bind to mucins. However, despite well structurally characterized adhesins and lectins, information on the nature and structure of oligosaccharides recognized by bacteria is still disparate. This review summarizes the current knowledge on the structure of epithelial mucin O-glycans and the interaction between host and commensal or pathogenic bacteria mediated by mucins.


Assuntos
Adesinas Bacterianas/metabolismo , Trato Gastrointestinal/microbiologia , Mucinas/química , Mucinas/metabolismo , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Trato Gastrointestinal/metabolismo , Homeostase , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ligação Proteica
11.
Contrast Media Mol Imaging ; 11(3): 211-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762591

RESUMO

Human gastric mucin MUC5AC is secreted in the colonic mucus of cancer patients and is a specific marker of precancerous lesions called aberrant crypt foci. Using MUC5AC as a specific marker can improve sensitivity in the detection of early colorectal cancer. Here we demonstrated that the accumulation of MUC5AC in xenograft and mouse stomach can be detected by magnetic resonance imaging (MRI). We used ultrasmall particles of iron oxide (USPIOs) conjugated with disulfide constrained heptapeptide that were identified using a screening phage display. To accomplish this, we employed positive selection of the phage display library on MUC5AC purified from fresh human colonic adenomas in combination with negative selection of the phage library on purified human MUC2, which is predominantly found in normal colorectal tissues. This conjugate was tested on human colorectal cancer cell lines that were either able or unable to secrete MUC5AC, both in vitro and in vivo. MUC5AC-USPIO contrast agent and USPIOs alone were not detected in cell lines unable to secrete MUC5AC. A combination of MRI and microscopy studies was performed to detect a specific accumulation of the contrast agent in vivo. Thus, the MUC5AC contrast agent enabled non-invasive detection of precancerous lesions and colorectal cancer, highlighting its potential use in diagnostics, in the early detection of colorectal cancer recurrences after treatment and in mechanistic studies implicating MUC5AC. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Mucina-5AC/análise , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Xenoenxertos , Humanos , Camundongos , Mucina-2 , Biblioteca de Peptídeos , Sensibilidade e Especificidade
12.
Front Oncol ; 5: 217, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500890

RESUMO

Although colorectal cancer is a preventable and curable disease if early stage tumors are removed, it still represents the second cause of cancer-related death worldwide. Surgical resection is the only curative treatment but once operated the patient is either subjected to adjuvant chemotherapy or not, depending on the invasiveness of the cancer and risks of recurrence. In this context, we investigated, by mass spectrometry (MS), alterations in the repertoire of glycosylation of mucins from colorectal tumors of various stages, grades, and recurrence status. Tumors were also compared with their counterparts in resection margins from the same patients and with healthy controls. The obtained data showed an important decrease in the level of expression of sialylated core 3-based O-glycans in tumors correlated with an increase in sialylated core 1 structures. No correlation was established between stages of the tumor samples and mucin O-glycosylation. However, with the notable exception of sialyl Tn antigens, tumors with recurrence presented a milder alteration of glycosylation profile than tumors without recurrence. These results suggest that mucin O-glycans from tumors with recurrence might mimic a healthier physiological situation, hence deceiving the immune defense system.

13.
PLoS One ; 10(9): e0136048, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367538

RESUMO

The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.


Assuntos
Mucosa Intestinal/microbiologia , Lactobacillus/patogenicidade , Estresse Psicológico/microbiologia , Animais , Colo/microbiologia , Colo/ultraestrutura , Íleo/microbiologia , Íleo/ultraestrutura , Mucosa Intestinal/ultraestrutura , Masculino , Mucina-2/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Estresse Psicológico/patologia
14.
Glycobiology ; 25(6): 617-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25595949

RESUMO

Helicobacter pylori is a Gram-negative bacterium that colonizes the mucus niche of the gastric mucosa and infects more than half of the world's human population. Chronic infection may cause gastritis, duodenal ulcer, intestinal metaplasia or gastric cancer. In the stomach, H. pylori interacts with O-glycans of gastric mucins but the mechanism by which the bacteria succeed in altering the mucosa remains mainly unknown. To better understand the physiopathology of the infection, inhibitory adhesion assays were performed with various O-glycans expressed by human gastric mucins, and topographic expression of gastric mucins MUC5AC and MUC6 was analyzed for healthy uninfected individuals, for infected asymptomatic individuals and for patients infected by H. pylori and having the incomplete type of intestinal metaplasia. The glycosylation of the gastric mucosa of asymptomatic individuals infected by H. pylori was determined and compared with the glycosylation pattern found for patients with the incomplete type of intestinal metaplasia. Results show that H. pylori manages to modulate host's glycosylation during the course of infection in order to create a favorable niche, whereas asymptomatic infected individuals seem to counteract further steps of infection development by adapting their mucus glycosylation.


Assuntos
Mucinas Gástricas/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Glicosilação , Infecções por Helicobacter/microbiologia , Humanos
15.
J Infect Dis ; 210(8): 1286-95, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24755437

RESUMO

Adhesion of Helicobacter pylori to the gastric mucosa is a necessary prerequisite for the pathogenesis of H. pylori-related diseases. In this study, we investigated the GalNAcß1-4GlcNAc motif (also known as N,N'-diacetyllactosediamine [lacdiNAc]) carried by MUC5AC gastric mucins as the target for bacterial binding to the human gastric mucosa. The expression of LacdiNAc carried by gastric mucins was correlated with H. pylori localization, and all strains tested adhered significantly to this motif. Proteomic analysis and mutant construction allowed the identification of a yet uncharacterized bacterial adhesin, LabA, which specifically recognizes lacdiNAc. These findings unravel a target of adhesion for H. pylori in addition to moieties recognized by the well-characterized adhesins BabA and SabA. Localization of the LabA target, restricted to the gastric mucosa, suggests a plausible explanation for the tissue tropism of these bacteria. These results pave the way for the development of alternative strategies against H. pylori infection, using adherence inhibitors.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Mucosa Gástrica/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Helicobacter pylori/fisiologia , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley
16.
Plant J ; 76(1): 61-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23802881

RESUMO

A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild-type plants, up to 45% of the l-fucose is substituted by l-galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose-deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l-fucose to l-galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The ß-galacturonic acid of chain A exhibits up to two methyl etherifications in an organ-specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.


Assuntos
Arabidopsis/química , Galactose/química , Pectinas/química , Folhas de Planta/química , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Parede Celular/metabolismo , Cromatografia Líquida , Fucose/análise , Fucose/metabolismo , Galactose/análise , Ácidos Hexurônicos , Monossacarídeos/química , Mutação , Especificidade de Órgãos , Pectinas/genética , Pectinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Espectrometria de Massas por Ionização por Electrospray
17.
J Biol Chem ; 286(46): 39982-92, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949134

RESUMO

UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double mutant ugd2,3 that lacks two of the four UGD isoforms. This mutant was obtained from a cross of ugd2 and ugd3 single mutants, which do not show phenotypical differences compared with the WT. In contrast, ugd2,3 has a strong dwarfed phenotype and often develops seedlings with severe root defects suggesting that the UGD2 and UGD3 isoforms act in concert. Differences in its cell wall composition in comparison to the WT were determined using biochemical methods indicating a significant reduction in arabinose, xylose, apiose, and galacturonic acid residues. Xyloglucan is less substituted with xylose, and pectins have a reduced amount of arabinan side chains. In particular, the amount of the apiose containing side chains A and B of rhamnogalacturonan II is strongly reduced, resulting in a swollen cell wall. The alternative pathway to UDP-glucuronic acid with the key enzyme myo-inositol oxygenase is not up-regulated in ugd2,3. The pathway also does not complement the ugd2,3 mutation, likely because the supply of myo-inositol is limited. Taken together, the presented data underline the importance of UDP GlcA for plant primary cell wall formation.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação para Baixo , Pectinas/biossíntese , Uridina Difosfato Ácido Glucurônico/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Mutação , Pectinas/genética , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo , Uridina Difosfato Ácido Glucurônico/genética
18.
Plant Mol Biol ; 77(3): 275-84, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21796445

RESUMO

Endo-ß-N-acetylglucosaminidases (ENGases) cleave N-glycans from proteins and/or peptides by hydrolyzing the O-glycosidic linkage between the two core-N-acetylglucosamine (GlcNAc) residues. Although, two homologous genes potentially encoding ENGases have been identified in Arabidopsis thaliana, their respective substrate specificity, their subcellular and their organ specific localization was hitherto unknown. In order to investigate the role of ENGases in this model plant species, we transiently expressed the two A. thaliana genes in Nicotiana benthamiana and determined the substrate specificities, as well as the Km values, of the purified recombinant enzymes. The assumed predominantly cytosolic localisation of both enzymes, here referred to as AtENGase85A and AtENGase85B, was determined by confocal microscopy of plant leaves expressing the respective GFP-fusion constructs. For the individual characterization of the two enzymes expression patterns in planta, single knock-out plants were selected for both genes. Although both enzymes are present in most organs, only AtENGase85A (At5g05460) was expressed in stems and no ENGase activity was detected in siliques. A double knock-out was generated by crossing but-like single knock-out plants-no apparent phenotype was observed. In contrast, in this double knock-out, free N-glycans carrying a single GlcNAc at the reducing end are completely absent and their counterparts with two GlcNAc-visible only at a trace level in wild type-accumulated dramatically.


Assuntos
Acetilglucosaminidase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citoplasma/enzimologia , Polissacarídeos/metabolismo , Acetilglucosaminidase/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biocatálise , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Espectrometria de Massas/métodos , Microscopia Confocal , Mutação , Oligossacarídeos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/análise , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
J Biol Chem ; 286(8): 5977-84, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21169363

RESUMO

L-fucose is a common constituent of Asn-linked glycans in vertebrates, invertebrates, and plants, but in fungal glycoproteins, fucose has not been found so far. However, by mass spectrometry we detected N-glycans and O-glycans containing one to six deoxyhexose residues in fruit bodies of several basidiomycetes. The N-glycans of chanterelles (Cantharellus cibarius) contained a deoxyhexose chromatographically identical to fucose and sensitive to α-L-fucosidase. Analysis of individual glycan species by tandem MS, glycosidase digestion, and finally (1)H NMR revealed the presence of L-fucose in α1,6-linkage to an α1,6-mannose of oligomannosidic N-glycans. The substitution by α1,6-mannose of α1,2-mannosyl residues of the canonical precursor structure was yet another hitherto unknown modification. No indication for the occurrence of yet other modifications, e.g. bisecting N-acetylglucosamine, was seen. Besides fucosylated N-glycans, short O-linked mannan chains substituted with fucose were present on chanterelle proteins. Although undiscovered so far, L-fucose appears to represent a prominent feature of protein-linked glycans in the fungal kingdom.


Assuntos
Basidiomycota/química , Fucose/química , Manose/química , Oligossacarídeos/química , Polissacarídeos/química , alfa-L-Fucosidase/química , Basidiomycota/metabolismo , Configuração de Carboidratos , Fucose/metabolismo , Manose/metabolismo , Espectrometria de Massas , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo
20.
Anal Chem ; 82(23): 9782-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21043458

RESUMO

We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5'-phosphosulfate or 3',5'-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2',3'-cyclic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-L-arabinofuranose, guanosine 5'-diphosphate (GDP)-L-galactofuranose, UDP-L-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches.


Assuntos
Carbono/química , Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Adenosina Fosfossulfato/química , Trifosfato de Adenosina/química , Animais , Células CHO , Cricetinae , Cricetulus , Guanosina Difosfato/química , Isomerismo , Porosidade , Substâncias Redutoras/química , Açúcares de Uridina Difosfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...