Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMJ Open ; 13(7): e070616, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429676

RESUMO

INTRODUCTION: Individuals with anorexia nervosa (AN) harbour distinct gut microbiomes compared with healthy individuals, which are sufficient to induce weight loss and anxiety-like behaviours when transplanted into germ-free mice. We hypothesise that faecal microbiome transfer (FMT) from healthy donors would help restore the gut microbiome of individuals with AN, which in turn, may aid patient recovery. METHODS: We aim to conduct an open-label pilot study in 20 females aged 16-32 years in Auckland, New Zealand who meet the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) criteria for AN and have a body mass index 13-19 kg/m2. We will recruit four healthy, lean, female donors, aged 18-32 years, who will undergo extensive clinical screening prior to stool donation. Faecal microbiota will be harvested from donors and double encapsulated in delayed release, acid-resistant capsules. All participants will receive a single course of 20 FMT capsules (five from each donor) which they can choose to take over two or four consecutive days. Stool and blood samples will be collected from participants over a period of 3 months to assess their gut microbiome profile, metabolome, levels of intestinal inflammation and nutritional status. Our primary outcome is a shift in the gut microbiome composition at 3 weeks post-FMT (Bray-Curtis dissimilarity). We will also monitor participants' body composition (whole-body dual-energy X-ray absorptiometry scans), eating disorder psychopathology, mental health and assess their views on, and tolerability of, treatment. All adverse events will be recorded and reviewed by an independent data monitoring committee. ETHICS AND DISSEMINATION: Ethics approval was provided by the Central Health and Disability Ethics Committee (Ministry of Health, New Zealand, 21/CEN/212). Results will be published in peer-reviewed journals and presented to both scientific and consumer group audiences. TRIAL REGISTRATION NUMBER: ACTRN12621001504808.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Microbiota , Feminino , Anorexia Nervosa/terapia , Cápsulas , Projetos Piloto , Humanos , Adolescente , Adulto Jovem , Adulto
2.
Microbiome ; 9(1): 107, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985595

RESUMO

BACKGROUND: Donor selection is an important factor influencing the engraftment and efficacy of fecal microbiota transplantation (FMT) for complex conditions associated with microbial dysbiosis. However, the degree, variation, and stability of strain engraftment have not yet been assessed in the context of multiple donors. METHODS: We conducted a double-blinded randomized control trial of FMT in 87 adolescents with obesity. Participants were randomized to receive multi-donor FMT (capsules containing the fecal microbiota of four sex-matched lean donors) or placebo (saline capsules). Following a bowel cleanse, participants ingested a total of 28 capsules over two consecutive days. Capsules from individual donors and participant stool samples collected at baseline, 6, 12, and 26 weeks post-treatment were analyzed by shotgun metagenomic sequencing allowing us to track bacterial strain engraftment and its functional implications on recipients' gut microbiomes. RESULTS: Multi-donor FMT sustainably altered the structure and the function of the gut microbiome. In what was effectively a microbiome competition experiment, we discovered that two donor microbiomes (one female, one male) dominated strain engraftment and were characterized by high microbial diversity and a high Prevotella to Bacteroides (P/B) ratio. Engrafted strains led to enterotype-level shifts in community composition and provided genes that altered the metabolic potential of the community. Despite our attempts to standardize FMT dose and origin, FMT recipients varied widely in their engraftment of donor strains. CONCLUSION: Our study provides evidence for the existence of FMT super-donors whose microbiomes are highly effective at engrafting in the recipient gut. Dominant engrafting male and female donor microbiomes harbored diverse microbial species and genes and were characterized by a high P/B ratio. Yet, the high variability of strain engraftment among FMT recipients suggests the host environment also plays a critical role in mediating FMT receptivity. TRIAL REGISTRATION: The Gut Bugs trial was registered with the Australian New Zealand Clinical Trials Registry ( ACTRN12615001351505 ). TRIAL PROTOCOL: The trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.


Assuntos
Disbiose , Transplante de Microbiota Fecal , Adolescente , Austrália , Disbiose/terapia , Fezes , Feminino , Humanos , Masculino , Obesidade/terapia , Resultado do Tratamento
3.
JAMA Netw Open ; 3(12): e2030415, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346848

RESUMO

Importance: Treatment of pediatric obesity is challenging. Preclinical studies in mice indicated that weight and metabolism can be altered by gut microbiome manipulation. Objective: To assess efficacy of fecal microbiome transfer (FMT) to treat adolescent obesity and improve metabolism. Design, Setting, and Participants: This randomized, double-masked, placebo-controlled trial (October 2017-March 2019) with a 26-week follow-up was conducted among adolescents aged 14 to 18 years with a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or more in Auckland, New Zealand. A total of 87 individuals took part-565 individuals responded to advertisements, 328 were ineligible, and 150 declined participation. Clinical data were analyzed from September 2019 to May 2020. Interventions: Single course of oral encapsulated fecal microbiome from 4 healthy lean donors of the same sex or saline placebo. Main Outcomes and Measures: Primary outcome was BMI standard deviation score at 6 weeks using intention-to-treat analysis. Secondary outcomes included body composition, cardiometabolic parameters, well-being, and gut microbiome composition. Results: Eighty-seven participants (59% female adolescents, mean [SD] age 17.2 [1.4] years) were randomized 1:1, in groups stratified by sex, to FMT (42 participants) or placebo (45 participants). There was no effect of FMT on BMI standard deviation score at 6 weeks (adjusted mean difference [aMD] -0.026; 95% CI -0.074, 0.022). Reductions in android-to-gynoid-fat ratio in the FMT vs placebo group were observed at 6, 12, and 26 weeks, with aMDs of -0.021 (95% CI, -0.041 to -0.001), -0.023 (95% CI, -0.043 to -0.003), and -0.029 (95% CI, -0.049 to -0.008), respectively. There were no observed effects on insulin sensitivity, liver function, lipid profile, inflammatory markers, blood pressure, total body fat percentage, gut health, and health-related quality of life. Gut microbiome profiling revealed a shift in community composition among the FMT group, maintained up to 12 weeks. In post-hoc exploratory analyses among participants with metabolic syndrome at baseline, FMT led to greater resolution of this condition (18 to 4) compared with placebo (13 to 10) by 26 weeks (adjusted odds ratio, 0.06; 95% CI, 0.01-0.45; P = .007). There were no serious adverse events recorded throughout the trial. Conclusions and Relevance: In this randomized clinical trial of adolescents with obesite, there was no effect of FMT on weight loss in adolescents with obesity, although a reduction in abdominal adiposity was observed. Post-hoc analyses indicated a resolution of undiagnosed metabolic syndrome with FMT among those with this condition. Further trials are needed to confirm these results and identify organisms and mechanisms responsible for mediating the observed benefits. Trial Registration: Australian New Zealand Clinical Trials Registry Identifier: ACTRN12615001351505.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Obesidade Infantil , Qualidade de Vida , Adolescente , Índice de Massa Corporal , Método Duplo-Cego , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Feminino , Humanos , Masculino , Monitorização Fisiológica/métodos , Nova Zelândia , Obesidade Infantil/metabolismo , Obesidade Infantil/fisiopatologia , Obesidade Infantil/psicologia , Obesidade Infantil/terapia , Resultado do Tratamento
4.
Sci Rep ; 10(1): 20101, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208826

RESUMO

Metabolic diseases are increasing among adolescents with obesity. Although the reported prevalence of metabolic syndrome is approximately 30% worldwide, its prevalence is largely unknown among New Zealand adolescents. Therefore, we assessed the health of adolescents with obesity (BMI ≥ 30 kg/m2) enrolled in a randomised clinical trial (Gut Bugs Trial), to identify the prevalence of undiagnosed comorbidities. Assessments included anthropometry, 24-h ambulatory blood pressure monitoring, and insulin sensitivity. We report on baseline data (pre-randomisation) on 87 participants (14-18 years; 59% females), with mean BMI 36.9 ± 5.3 kg/m2 (BMI SDS 3.33 ± 0.79). Approximately 40% of participants had undiagnosed metabolic syndrome, which was twice as common among males. Half (53%) had pre-diabetes and 92% a reduction in insulin sensitivity. Moreover, 31% had pre-hypertension/hypertension, 69% dyslipidaemia, and 25% abnormal liver function. Participants with class III obesity had a greater risk of metabolic syndrome than those with classes I/II [relative risk 1.99 (95% CI 1.19, 3.34)]. Risks for pre-hypertension/hypertension and inflammation were also greater among those with class III obesity. We identified a high prevalence of undiagnosed comorbidities among adolescents with obesity in New Zealand. As adolescent obesity tracks into adulthood, early interventions are needed to prevent progression to overt cardiometabolic diseases.


Assuntos
Síndrome Metabólica/epidemiologia , Obesidade Infantil/epidemiologia , Estado Pré-Diabético/epidemiologia , Doenças não Diagnosticadas/epidemiologia , Adolescente , Monitorização Ambulatorial da Pressão Arterial , Índice de Massa Corporal , Comorbidade , Dislipidemias/epidemiologia , Feminino , Humanos , Resistência à Insulina , Masculino , Nova Zelândia/epidemiologia , Pré-Hipertensão/epidemiologia , Prevalência , Fatores Socioeconômicos , Circunferência da Cintura
5.
Clin Endocrinol (Oxf) ; 93(1): 3-10, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181906

RESUMO

Gut microbiome transfer (GMT; also referred to as faecal microbiota transplantation or FMT) has been propelled from fringe therapy to mainstream science as a highly effective treatment for recurrent Clostridioides difficile infection. As a result, there has been great interest in the potential efficacy and safety of GMT in treating other medical conditions, for example inflammatory bowel disease, and more recently as a novel therapy for obesity and metabolic diseases. For these chronic conditions, the results from clinical trials have been mixed. Further, specifically in obesity and metabolic diseases, there are limited available data, with only a few published studies with a small number of participants and short duration of follow-up. Therefore, this review aims to explore the human, microbial and formulation factors that may affect the success of GMT. This includes various aspects in the preparation and administration of GMT, such as stool processing, modes of delivery, pretreatment with antibiotics and/or bowel lavage, frequency of GMT and possible use of precision bacteriotherapy. In addition, we examine the potential use of GMT in obesity, type 2 diabetes and metabolic diseases based on current available literature, highlighting some recent advances in GMT research in this area, as well as potential adverse effects after GMT therapy.


Assuntos
Infecções por Clostridium , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Transplante de Microbiota Fecal , Fezes , Humanos
6.
JAMA Netw Open ; 3(1): e1919681, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31968118

RESUMO

Importance: Although antibiotics are associated with obesity in animal models, the evidence in humans is conflicting. Objective: To assess whether antibiotic exposure during pregnancy and/or early childhood is associated with the development of childhood obesity, focusing particularly on siblings and twins. Design, Setting, and Participants: This cross-sectional national study included 284 211 participants (132 852 mothers and 151 359 children) in New Zealand. Data analyses were performed for 150 699 children for whom data were available, 30 696 siblings, and 4188 twins using covariate-adjusted analyses, and for 6249 siblings and 522 twins with discordant outcomes using fixed-effects analyses. Data analysis was performed November 2017 to March 2019. Exposure: Exposure to antibiotics during pregnancy and/or early childhood. Main Outcomes and Measures: The main outcome is odds of obesity at age 4 years. Anthropometric data from children born between July 2008 and June 2011 were obtained from the B4 School Check, a national health screening program that records the height and weight of 4-year-old children in New Zealand. These data were linked to antibiotics (pharmaceutical records) dispensed to women before conception and during all 3 trimesters of pregnancy and to their children from birth until age 2 years. Results: The overall study population consisted of 132 852 mothers and 151 359 children (77 610 [51.3%] boys) who were aged 4 to 5 years when their anthropometrical measurements were assessed. Antibiotic exposure was common, with at least 1 course dispensed to 35.7% of mothers during pregnancy and 82.3% of children during the first 2 years of life. Results from covariate-adjusted analyses showed that both prenatal and early childhood exposures to antibiotics were independently associated with obesity at age 4 years, in a dose-dependent manner. Every additional course of antibiotics dispensed to the mothers yielded an adjusted odds ratio (aOR) of obesity in their children (siblings) of 1.02 (95% CI, 0.99-1.06), which was similar to the odds across pregnancy for the whole population (aOR, 1.06; 95% CI, 1.04-1.07). For the child's exposure, the aOR for the association between antibiotic exposure and obesity was 1.04 (95% CI, 1.03-1.05) among siblings and 1.05 (95% CI, 1.02-1.09) among twins. However, fixed-effects analyses of siblings and twins showed no associations between antibiotic exposure and obesity, with aORs of 0.95 (95% CI, 0.90-1.00) for maternal exposure, 1.02 (95% CI, 0.99-1.04) for child's exposure, and 0.91 (95% CI, 0.81-1.02) for twins' exposure. Conclusions and Relevance: Although covariate-adjusted analyses demonstrated an association between antibiotic exposure and odds of obesity, further analyses of siblings and twins with discordant outcomes showed no associations. Thus, these discordant results likely reflect unmeasured confounding factors.


Assuntos
Antibacterianos/efeitos adversos , Exposição Materna/efeitos adversos , Obesidade Infantil/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Adulto , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nova Zelândia , Razão de Chances , Gravidez , Fatores de Risco
7.
BMJ Open ; 9(4): e026174, 2019 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31005929

RESUMO

INTRODUCTION: Animal studies showed that germ-free mice inoculated with normal mouse gut bacteria developed obesity, insulin resistance and higher triglyceride levels, despite similar food intake. In humans, an association has been found between obesity and gut microbiome dysbiosis. However, gut microbiome transfer has not been evaluated for the treatment of human obesity. We will examine the effectiveness of gut microbiome transfer using encapsulated material for the treatment of obesity in adolescents. METHODS AND ANALYSIS: A two-arm, double-blind, placebo-controlled, randomised clinical trial of a single course of gut microbiome transfer will be conducted in 80 obese [body mass index (BMI) ≥30 kg/m2] adolescents (males and females, aged 14-18 years) in Auckland, New Zealand. Healthy lean donors (males and females, aged 18-28 years) will provide fresh stool samples from which bacteria will be isolated and double encapsulated. Participants (recipients) will be randomised at 1:1 to control (placebo) or treatment (gut microbiome transfer), stratified by sex. Recipients will receive 28 capsules over two consecutive mornings (~14 mL of frozen microbial suspension or saline). Clinical assessments will be performed at baseline, 6, 12 and 26 weeks, and will include: anthropometry, blood pressure, fasting metabolic markers, dietary intake, physical activity levels and health-related quality of life. Insulin sensitivity (Matsuda index), gut microbiota population structure characterised by 16S rRNA amplicon sequencing and body composition (using dual-energy X-ray absorptiometry) will be assessed at baseline, 6, 12 and 26 weeks. 24-hour ambulatory blood pressure monitoring will be performed at baseline and at 6 weeks. The primary outcome is BMI SD scores (SDS) at 6 weeks, with BMI SDS at 12 and 26 weeks as secondary outcomes. Other secondary outcomes include insulin sensitivity, adiposity (total body fat percentage) and gut microbial composition at 6, 12 and 26 weeks. Statistical analysis will be performed on the principle of intention to treat. ETHICS AND DISSEMINATION: Ethics approval was provided by the Northern A Health and Disability Ethics Committee (Ministry of Health, New Zealand; 16/NTA/172). The trial results will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER: ACTRN12615001351505; Pre-results.


Assuntos
Disbiose/terapia , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Obesidade Infantil/terapia , Adolescente , Adulto , Índice de Massa Corporal , Método Duplo-Cego , Disbiose/etiologia , Fezes/microbiologia , Feminino , Seguimentos , Humanos , Masculino , Obesidade Infantil/complicações , Qualidade de Vida , Resultado do Tratamento , Adulto Jovem
8.
Clin Endocrinol (Oxf) ; 88(2): 185-200, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023853

RESUMO

Antibiotics have been hailed by many as "miracle drugs" that have been effectively treating infectious diseases for over a century, leading to a marked reduction in morbidity and mortality. However, with the increasing use of antibiotics, we are now faced not only with the increasing threat of antibiotic resistance, but also with a rising concern about potential long-term effects of antibiotics on human health, including the development of obesity. The obesity pandemic continues to increase, a problem that affects both adults and children alike. Disruptions to the gut microbiome have been linked to a multitude of adverse conditions, including obesity, type 2 diabetes, inflammatory bowel diseases, anxiety, autism, allergies, and autoimmune diseases. This review focuses on the association between antibiotics and obesity, and the role of the gut microbiome. There is strong evidence supporting the role of antibiotics in the development of obesity in well-controlled animal models. However, evidence for this link in humans is still inconclusive, and we need further well-designed clinical trials to clarify this association.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/epidemiologia , Animais , Modelos Animais , Obesidade/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...