Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(30): 11534-11543, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463315

RESUMO

Bisabolene is a bioactive sesquiterpene with a wide range of applications in food, cosmetics, medicine, and aviation fuels. Microbial production offers a green, efficient, and sustainable alternative. In this study, we focused on improving the titers of α-bisabolene in Yarrowia lipolytica by applying two strategies, (i) optimizing the metabolic flux of α-bisabolene biosynthetic pathway and (ii) sequestering α-bisabolene in lipid droplet, thus alleviating its inherent toxicity to host cells. We showed that overexpression of DGA1 and OLE1 to increase lipid content and unsaturated fatty acid levels was essential for boosting the α-bisabolene synthesis when supplemented with auxiliary carbon sources. The final engineered strain Po1gαB10 produced 1954.3 mg/L α-bisabolene from the waste cooking oil under shake flask fermentation, which was 96-fold higher than the control strain Po1gαB0. At the time of writing, our study represents the highest reported α-bisabolene titer in the engineered Y. lipolytica cell factory. This work describes novel strategies to improve the bioproduction of α-bisabolene that potentially may be applicable for other high-value terpene products.


Assuntos
Sesquiterpenos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Gotículas Lipídicas/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo
2.
Microb Cell Fact ; 21(1): 186, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085205

RESUMO

BACKGROUND: Amyrin is an important triterpenoid and precursor to a wide range of cosmetic, pharmaceutical and nutraceutical products. In this study, we metabolically engineered the oleaginous yeast, Yarrowia lipolytica to produce α- and ß-amyrin on simple sugar and waste cooking oil. RESULTS: We first validated the in vivo enzymatic activity of a multi-functional amyrin synthase (CrMAS) from Catharanthus roseus, by expressing its codon-optimized gene in Y. lipolytica and assayed for amyrins. To increase yield, prevailing genes in the mevalonate pathway, namely HMG1, ERG20, ERG9 and ERG1, were overexpressed singly and in combination to direct flux towards amyrin biosynthesis. By means of a semi-rational protein engineering approach, we augmented the catalytic activity of CrMAS and attained ~ 10-folds higher production level on glucose. When applied together, protein engineering with enhanced precursor supplies resulted in more than 20-folds increase in total amyrins. We also investigated the effects of different fermentation conditions in flask cultures, including temperature, volumetric oxygen mass transfer coefficient and carbon source types. The optimized fermentation condition attained titers of at least 100 mg/L α-amyrin and 20 mg/L ß-amyrin. CONCLUSIONS: The design workflow demonstrated herein is simple and remarkably effective in amplifying triterpenoid biosynthesis in the yeast Y. lipolytica.


Assuntos
Yarrowia , Fermentação , Engenharia Metabólica , Ácido Mevalônico , Engenharia de Proteínas , Yarrowia/genética
3.
ACS Appl Mater Interfaces ; 13(49): 59263-59274, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846837

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are common and pose significant costs to healthcare systems. To date, this problem is largely unsolved as commercially available antimicrobial catheters are still lacking in functionality and performance. A prior study by Lim et al. ( Biotechnol. Bioeng. 2018, 115 (8), 2000-2012) reported the development of a novel anhydrous polycaprolactone (PCL) polymer formulation with controlled-release functionality for antimicrobial peptides. In this follow-up study, we developed an improved antimicrobial peptide (AMP)-impregnated poly(ethylene glycol) (PEG)-polycaprolactone (PCL) anhydrous polymer coating for enhanced sustained controlled-release functionality to provide catheters with effective antimicrobial properties. Varying the ratio of PEG and PEG-PCL copolymers resulted in polymers with different morphologies, consequently affecting the AMP release profiles. The optimal coating, formulated with 10% (w/w) PEG-PCL in PCL, achieved a controlled AMP release rate of 31.65 ± 6.85 µg/mL daily for up to 19 days, with a moderate initial burst release. Such profile is desired for antimicrobial coating as the initial burst release acts as a sterilizer to kill the bacteria present in the urinary tract upon insertion, and the subsequent linear release functions as a prophylaxis to deter opportunistic microbial infections. As a proof-of-concept application, our optimized coating was then applied to a commercial silicone catheter for further antibacterial tests. Preliminary results revealed that our coated catheters outperformed commercial silver-based antimicrobial catheters in terms of antimicrobial performance and sustainability, lasting for 4 days. Application of the controlled-release coating also aids in retarding biofilm formation, showing a lower extent of biofilm formation at the end of seven inoculation cycles.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Cateteres Urinários/microbiologia , Infecções Urinárias/prevenção & controle , Antibacterianos/química , Peptídeos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula
4.
Front Bioeng Biotechnol ; 8: 585935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123518

RESUMO

Aldehydes are a class of highly versatile chemicals that can undergo a wide range of chemical reactions and are in high demand as starting materials for chemical manufacturing. Biologically, fatty aldehydes can be produced from fatty acyl-CoA by the action of fatty acyl-CoA reductases. The aldehydes produced can be further converted enzymatically to other valuable derivatives. Thus, metabolic engineering of microorganisms for biosynthesizing aldehydes and their derivatives could provide an economical and sustainable platform for key aldehyde precursor production and subsequent conversion to various value-added chemicals. Saccharomyces cerevisiae is an excellent host for this purpose because it is a robust organism that has been used extensively for industrial biochemical production. However, fatty acyl-CoA-dependent aldehyde-forming enzymes expressed in S. cerevisiae thus far have extremely low activities, hence limiting direct utilization of fatty acyl-CoA as substrate for aldehyde biosynthesis. Toward overcoming this challenge, we successfully engineered an alcohol-forming fatty acyl-CoA reductase for aldehyde production through rational design. We further improved aldehyde production through strain engineering by deleting competing pathways and increasing substrate availability. Subsequently, we demonstrated alkane and alkene production as one of the many possible applications of the aldehyde-producing strain. Overall, by protein engineering of a fatty acyl-CoA reductase to alter its activity and metabolic engineering of S. cerevisiae, we generated strains with the highest reported cytosolic aliphatic aldehyde and alkane/alkene production to date in S. cerevisiae from fatty acyl-CoA.

5.
J Biosci Bioeng ; 129(1): 31-40, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31320262

RESUMO

Fatty acid ethyl esters (FAEEs) can potentially be used as biodiesel, which provides a renewable alternative to petroleum-derived diesel. FAEEs are primarily produced via transesterification of vegetable oil with an alcohol catalyzed by a strong base, which raises safety concerns. Microbial production presents a more environmentally sustainable method for FAEE production, and by harnessing the ability of oleaginous yeast Yarrowia lipolytica to degrade and assimilate hydrophobic substrates, FAEE production could be coupled to food waste bioremediation. In this study, we engineered Y. lipolytica to produce FAEEs from dextrose as well as from vegetable cooking oil as a model food waste. Firstly, we introduced pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) from Zymomonas mobilis to reconstitute the heterologous pathway for ethanol production. Second, we introduced and compared two heterologous wax ester synthases ws2 and maqu_0168 from Marinobacter sp. for FAEE biosynthesis. Next, we disrupted competitive pathways to increase fatty acyl-CoA pool, and optimized carbon sources and cell density for shake-flask fermentation. The engineered strain showed a 24-fold improvement in FAEE production titer over the starting strain. Moreover, we explored the potential of the engineered strain for FAEE production from the model food waste by supplementing vegetable cooking oil to the culture medium. To the best of our knowledge, this is the first report on FAEE production with the supplementation of vegetable cooking oil in Y. lipolytica. These findings provide valuable insights into the engineering of Y. lipolytica for high-level production of FAEEs and its utilization in food waste bioremediation.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Biodegradação Ambiental , Biocombustíveis/análise , Esterificação , Etanol/metabolismo , Ácidos Graxos/química , Fermentação , Engenharia Metabólica/métodos , Óleos de Plantas/química , Eliminação de Resíduos , Verduras/química , Verduras/metabolismo
6.
Microb Cell Fact ; 17(1): 166, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359264

RESUMO

BACKGROUND: Microbial biofuel production provides a promising sustainable alternative to fossil fuels. 1-Butanol is recognized as an advanced biofuel and is gaining attention as an ideal green replacement for gasoline. In this proof-of-principle study, the oleaginous yeast Yarrowia lipolytica was first engineered with a heterologous CoA-dependent pathway and an endogenous pathway, respectively. RESULTS: The co-overexpression of two heterologous genes ETR1 and EutE resulted in the production of 1-butanol at a concentration of 65 µg/L. Through the overexpression of multiple 1-butanol pathway genes, the titer was increased to 92 µg/L. Cofactor engineering through endogenous overexpression of a glyceraldehyde-3-phosphate dehydrogenase and a malate dehydrogenase further led to titer improvements to 121 µg/L and 110 µg/L, respectively. In addition, the presence of an endogenous 1-butanol production pathway and a gene involved in the regulation of 1-butanol production was successfully identified in Y. lipolytica. The highest titer of 123.0 mg/L was obtained through this endogenous route by combining a pathway gene overexpression strategy. CONCLUSIONS: This study represents the first report on 1-butanol biosynthesis in Y. lipolytica. The results obtained in this work lay the foundation for future engineering of the pathways to optimize 1-butanol production in Y. lipolytica.


Assuntos
1-Butanol/metabolismo , Coenzima A/metabolismo , Yarrowia/metabolismo , Expressão Gênica , Engenharia Metabólica , Plasmídeos/metabolismo
7.
Biotechnol Adv ; 36(7): 1870-1881, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031049

RESUMO

Synthetic biologists construct biological components and systems to look into biological phenomena and drive a myriad of practical applications that aim to tackle current global challenges in energy, healthcare and the environment. While most tools have been established in bacteria, particularly Escherichia coli, recent years have seen parallel developments in the model yeast strain Saccharomyces cerevisiae, one of the most well-understood eukaryotic biological system. Here, we outline the latest advances in yeast synthetic biology tools based on a framework of abstraction hierarchies of parts, circuits and genomes. In brief, the creation and characterization of biological parts are explored at the transcriptional, translational and post-translational levels. Using characterized parts as building block units, the designing of functional circuits is elaborated with examples. In addition, the status and potential applications of synthetic genomes as a genome level platform for biological system construction are also discussed. In addition to the development of a toolkit, we describe how those tools have been applied in the areas of drug production and screening, study of disease mechanisms, pollutant sensing and bioremediation. Finally, we provide a future outlook of yeast as a workhorse of eukaryotic genetics and a chosen chassis in this field.


Assuntos
Saccharomyces cerevisiae/genética , Biologia Sintética
8.
Biotechnol Bioeng ; 115(8): 2000-2012, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665026

RESUMO

Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability.


Assuntos
Anti-Infecciosos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Poliésteres/administração & dosagem , Animais , Anti-Infecciosos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Infecções Relacionadas a Cateter/prevenção & controle , Modelos Animais de Doenças , Camundongos , Infecções Urinárias/prevenção & controle , Infecção dos Ferimentos/prevenção & controle
9.
Biotechnol Bioeng ; 114(1): 232-237, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26717118

RESUMO

Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof-of-principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α-dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12-18 free fatty acids to C11-17 aldehydes. Co-expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole-cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232-237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Alcanos/metabolismo , Biocombustíveis , Ácidos Graxos não Esterificados/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Biocatálise , Reatores Biológicos/microbiologia , Dioxigenases/genética , Dioxigenases/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
10.
J Vis Exp ; (115)2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27684280

RESUMO

Yarrowia lipolytica is a non-pathogenic, dimorphic and strictly aerobic yeast species. Owing to its distinctive physiological features and metabolic characteristics, this unconventional yeast is not only a good model for the study of the fundamental nature of fungal differentiation but is also a promising microbial platform for biochemical production and various biotechnological applications, which require extensive genetic manipulations. However, genetic manipulations of Y. lipolytica have been limited due to the lack of an efficient and stable genetic transformation system as well as very high rates of non-homologous recombination that can be mainly attributed to the KU70 gene. Here, we report an easy and rapid protocol for the efficient genetic transformation and for gene deletion in Y. lipolytica Po1g. First, a protocol for the efficient transformation of exogenous DNA into Y. lipolytica Po1g was established. Second, to achieve the enhanced double-crossover homologous recombination rate for further deletion of target genes, the KU70 gene was deleted by transforming a disruption cassette carrying 1 kb homology arms. Third, to demonstrate the enhanced gene deletion efficiency after deletion of the KU70 gene, we individually deleted 11 target genes encoding alcohol dehydrogenase and alcohol oxidase using the same procedures on the KU70 knockout platform strain. It was observed that the rate of precise homologous recombination increased substantially from less than 0.5% for deletion of the KU70 gene in Po1g to 33%-71% for the single gene deletion of the 11 target genes in Po1g KU70Δ. A replicative plasmid carrying the hygromycin B resistance marker and the Cre/LoxP system was constructed, and the selection marker gene in the yeast knockout strains was eventually removed by expression of Cre recombinase to facilitate multiple rounds of targeted genetic manipulations. The resulting single-gene deletion mutants have potential applications in biofuel and biochemical production.


Assuntos
Biocombustíveis , Engenharia Genética , Recombinação Homóloga , Yarrowia , Biotecnologia/métodos , Saccharomyces cerevisiae
11.
Metab Eng ; 34: 36-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721212

RESUMO

Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.


Assuntos
Ácidos Graxos/biossíntese , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácidos Graxos/genética , Metaboloma/fisiologia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima/fisiologia
12.
Biotechnol Biofuels ; 8: 231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26719765

RESUMO

BACKGROUND: Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels. RESULTS: To increase alkane tolerance in S. cerevisiae, we sought to exploit the pleiotropic drug resistance (Pdr) transcription factors Pdr1p and Pdr3p, which are master regulators of genes with pleiotropic drug resistance elements (PDREs)-containing upstream sequences. Wild-type and site-mutated Pdr1p and Pdr3p were expressed in S. cerevisiae BY4741 pdr1Δ pdr3Δ (BYL13). The point mutations of PDR1 (F815S) and PDR3 (Y276H) in BYL13 resulted in the highest tolerance to C10 alkane, and the expression of wild-type PDR3 in BYL13 led to the highest tolerance to C11 alkane. To identify and verify the correlation between the Pdr transcription factors and tolerance improvement, we analyzed the expression patterns of genes regulated by the Pdr transcription factors in the most tolerant strains against C10 and C11 alkanes. Quantitative PCR results showed that the Pdr transcription factors differentially regulated genes associated with multi-drug resistance, stress responses, and membrane modifications, suggesting different extents of intracellular alkane levels, reactive oxygen species (ROS) production and membrane integrity. We further showed that (i) the expression of Pdr1mt1 + Pdr3mt reduced intracellular C10 alkane by 67 % and ROS by 53 %, and significantly alleviated membrane damage; and (ii) the expression of the Pdr3wt reduced intracellular C11 alkane by 72 % and ROS by 21 %. Alkane transport assays also revealed that the reduction of alkane accumulation was due to higher export (C10 and C11 alkanes) and lower import (C11 alkane). CONCLUSIONS: We improved yeast's tolerance to alkane biofuels by modulating the expression of the wild-type and site-mutated Pdr1p and Pdr3p, and extensively identified the correlation between Pdr transcription factors and tolerance improvement by analyzing gene patterns, alkane transport, ROS, and membrane integrity. These findings provide valuable insights into manipulating transcription factors in yeast for improved alkane tolerance and productivity.

13.
Acta Biomater ; 15: 127-38, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541344

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are the most common hospital-acquired infections worldwide, aggravating the problem of antimicrobial resistance and patient morbidity. There is a need for a potent and robust antimicrobial coating for catheters to prevent these infections. An ideal coating agent should possess high antimicrobial efficacy and be easily and economically conjugated to the catheter surface. In this study, we report a simple yet effective immobilization strategy to tether a potent synthetic antimicrobial peptide, CWR11, onto catheter-relevant surfaces. Polydopamine (PD) was deposited as a thin adherent film onto a polydimethylsiloxane (PDMS) surface to facilitate attachment of CWR11 onto the PD-functionalized polymer. Surface characterization of the CWR11-tethered surfaces confirmed the successful immobilization of peptides onto the PD-coated PDMS. The CWR11-immobilized PDMS slides displayed excellent antimicrobial (significant inhibition of 5×10(4) colony-forming units of CAUTI-relevant microbes) and antibiofilm (∼92% enhanced antibacterial adherence) properties. To assess its clinical relevance, the PD-based immobilization platform was translated onto commercial silicone-coated Foley catheters. The CWR11-impregnated catheter displayed potent bactericidal properties against both Gram-positive and Gram-negative bacteria, and retained its antimicrobial functionality for at least 21days, showing negligible cytotoxicity against human erythrocyte and uroepithelial cells. The outcome of this study demonstrates the proof-of-concept potential of a polydopamine-CWR11-functionalized catheter to combat CAUTIs.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Catéteres/microbiologia , Materiais Revestidos Biocompatíveis/farmacologia , Indóis/farmacologia , Peptídeos/farmacologia , Polímeros/farmacologia , Células 3T3 , Albuminas/metabolismo , Animais , Incrustação Biológica , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Concentração Osmolar , Propriedades de Superfície
14.
mBio ; 5(6): e01932, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25370492

RESUMO

UNLABELLED: Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. IMPORTANCE: The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.


Assuntos
Biocombustíveis/toxicidade , Tolerância a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Escherichia coli/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Pentanóis/metabolismo , Pentanóis/toxicidade , Análise de Sequência de DNA
15.
Curr Opin Biotechnol ; 29: 99-106, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24743028

RESUMO

Microbial metabolic engineering has been extensively studied for valuable chemicals synthesis, generating numerous laboratory-scale successes, and has demonstrated its potential to serve as a platform that enables large-scale manufacturing of many chemicals that are currently derived via chemical synthesis. However, the commercialization potential of microbial chemical production frequently suffers from low productivity and yields, where one key limiting factor is the inherently low tolerance of host cells against toxic compounds that are present and/or generated during biological processing. Consequently, various microbial engineering strategies have been devised to endow producer microbes with tolerance phenotypes that would be required for economically viable production of the desired chemicals. In this review, we discuss key microbial engineering strategies, devised primarily based on rational and evolutionary methodologies, that have been effective in improving cellular tolerance against fermentation inhibitors, metabolic intermediates, and valuable end-products derived from lignocellulose bioprocessing.


Assuntos
Bactérias/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Fenômenos Bioquímicos , Fermentação
16.
Acta Biomater ; 10(1): 258-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056098

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Engenharia de Proteínas , Silicones/química , Cloreto de Sódio/farmacologia , Trifosfato de Adenosina/metabolismo , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Proteínas Imobilizadas/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Cateteres Urinários , Molhabilidade/efeitos dos fármacos
17.
Biotechnol Bioeng ; 111(1): 37-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23860860

RESUMO

Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human ß-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Engenharia de Proteínas/métodos , Triptofano/química , Antibacterianos/química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Arginina/genética , Arginina/metabolismo , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Relação Estrutura-Atividade , Triptofano/genética , Triptofano/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-25566540

RESUMO

Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

19.
J Mater Chem B ; 2(12): 1706-1716, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261400

RESUMO

Bacterial colonization of urinary catheters is a common problem leading to Catheter Associated Urinary Tract Infections (CAUTIs) in patients, which result in high treatment costs and associated complications. Due to the advantages of antimicrobial peptides (AMPs) compared to most other antimicrobial molecules, an increasing number of AMP-coated surfaces is being developed but their efficacy is hindered by suboptimal coating methods and loss of peptide activity upon surface tethering. This study aims to address this issue by employing a methodic approach that combines a simple selective chemical immobilization platform developed on a silicone catheter with the choice of a potent AMP, Lasioglossin-III (Lasio-III), to allow site specific immobilization of Lasio-III at an effective surface concentration. The Lasio-III peptide was chemically modified at the N-terminal with a cysteine residue to facilitate cysteine-directed immobilization of the peptide onto a commercial silicone catheter surface via a combination of an allyl glycidyl ether (AGE) brush and polyethylene glycol (PEG) based chemical coupling. The amount of immobilized peptide was determined to be 6.59 ± 0.89 µg cm-2 by Sulfo-SDTB assay. The AMP-coated catheter showed good antimicrobial activity against both Gram positive and negative bacteria. The antimicrobial properties of the AMP-coated catheter were sustained for at least 4 days post-incubation in a physiologically relevant environment and artificial urine and prevented the biofilm growth of E. coli and E. faecalis. Adenosine tri-phosphate leakage and propidium iodide fluorescence studies further confirmed the membranolytic mode of action of the immobilized peptide. To the best of our knowledge, this is the first proof-of-concept study that reports the efficacy of AMP immobilization by sulfhydryl coupling on a real catheter surface.

20.
ACS Appl Mater Interfaces ; 5(13): 6412-22, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758173

RESUMO

With the rapid rise of antibiotic-resistant-device-associated infections, there has been increasing demand for an antimicrobial biomedical surface. Synthetic antimicrobial peptides that have excellent bactericidal potency and negligible cytotoxicity are promising targets for immobilization on these target surfaces. An engineered arginine-tryptophan-rich peptide (CWR11) was developed, which displayed potent antimicrobial activity against a broad spectrum of microbes via membrane disruption, and possessed excellent salt resistance properties. A tethering platform was subsequently developed to tether CWR11 onto a model polymethylsiloxane (PDMS) surface using a simple and robust strategy. Surface characterization assays such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) confirmed the successful grafting of CWR11 onto the chemically treated PDMS surface. The immobilized peptide concentration was 0.8 ± 0.2 µg/cm(2) as quantitated by sulfosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate (sulfo-SDTB) assay. Antimicrobial assay and cytotoxic investigation confirmed that the peptide-immobilized surface has good bactericidal and antibiofilm properties, and is also noncytotoxic to mammalian cells. Tryptophan-arginine-rich antimicrobial peptides have the potential for antimicrobial protection of biomedical surfaces and may have important clinical applications in patients.


Assuntos
Antibacterianos/química , Arginina/química , Biofilmes/efeitos dos fármacos , Peptídeos/química , Triptofano/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Arginina/farmacologia , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Peptídeos/síntese química , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Silicones/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA