Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 104, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378836

RESUMO

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and the most prevalent monogenic cause of autism. Although the knockout (KO) of the Fmr1 gene homolog in mice is primarily used for elucidating the neurobiological substrate of FXS, there is limited association of the experimental data with the pathophysiological condition in humans. The use of Fmr1 KO rats offers additional translational validity in this regard. Therefore, we employed a multi-level approach to study the behavioral profile and the glutamatergic and GABAergic neurotransmission status in pathophysiology-associated brain structures of Fmr1 KO rats, including the recordings of evoked and spontaneous field potentials from hippocampal slices, paralleled with next-generation RNA sequencing (RNA-seq). We found that these rats exhibit hyperactivity and cognitive deficits, along with characteristic bidirectional glutamatergic and GABAergic alterations in the prefrontal cortex and the hippocampus. These results are coupled to affected excitability and local inhibitory processes in the hippocampus, along with a specific transcriptional profile, highlighting dysregulated hippocampal network activity in KO rats. Overall, our data provide novel insights concerning the biobehavioral profile of FmR1 KO rats and translationally upscales our understanding on pathophysiology and symptomatology of FXS syndrome.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Síndrome do Cromossomo X Frágil , Ratos , Camundongos , Animais , Humanos , Camundongos Knockout , Hipocampo/metabolismo , Encéfalo/metabolismo , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Modelos Animais de Doenças
2.
Dev Neurosci ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38368859

RESUMO

Introduction Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. Loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampus are affected similarly or not in FXS. Method We used a Fmr1 knock-out (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampus of adult rats. Results Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics. Conclusions These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampus in individuals with FXS.

3.
Front Cell Neurosci ; 17: 1296235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107412

RESUMO

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.

4.
Brain Sci ; 13(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002556

RESUMO

A common neurobiological mechanism in several neurodevelopmental disorders, including fragile X syndrome (FXS), is alterations in the balance between excitation and inhibition in the brain. It is thought that in the hippocampus, as in other brain regions, FXS is associated with increased excitability and reduced inhibition. However, it is still not known whether these changes apply to both the dorsal and ventral hippocampus, which appear to be differently involved in neurodegenerative disorders. Using a Fmr1 knock-out (KO) rat model of FXS, we found increased neuronal excitability in both the dorsal and ventral KO hippocampus and increased excitatory synaptic transmission in the dorsal hippocampus. Interestingly, synaptic inhibition is significantly increased in the ventral but not the dorsal KO hippocampus. Furthermore, the ventral KO hippocampus displays increased expression of the α1GABAA receptor subtype and a remarkably reduced rate of epileptiform discharges induced by magnesium-free medium. In contrast, the dorsal KO hippocampus displays an increased rate of epileptiform discharges and similar expression of α1GABAA receptors compared with the dorsal WT hippocampus. Blockade of α5GABAA receptors by L-655,708 did not affect epileptiform discharges in any genotype or hippocampal segment, and the expression of α5GABAA receptors did not differ between WT and KO hippocampus. These results suggest that the increased excitability of the dorsal KO hippocampus contributes to its heightened tendency to epileptiform discharges, while the increased phasic inhibition in the Fmr1-KO ventral hippocampus may represent a homeostatic mechanism that compensates for the increased excitability reducing its vulnerability to epileptic activity.

5.
Neuroscience ; 458: 11-30, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465412

RESUMO

The functional organization of the hippocampus along its longitudinal (septotemporal or dorsoventral) axis is conspicuously heterogeneous. This functional diversification includes the activity of sharp wave and ripples (SPW-Rs), a complex intrinsic network pattern involved in memory consolidation. In this study, using transverse slices from the ventral and the dorsal rat hippocampus and recordings of CA1 field potentials we studied the development of SPW-Rs and possible changes in local network excitability and inhibition, during in vitro maintenance of the hippocampal tissue. We found that SPW-Rs develop gradually in terms of magnitude and rate of occurrence in the ventral hippocampus. On the contrary, neither the magnitude nor the rate of occurrence significantly changed in dorsal hippocampal slices during their in vitro maintenance. The development of SPW-Rs was accompanied by an increase in local network excitability more in the ventral than in the dorsal hippocampus, and an increase in local network inhibition in the ventral hippocampus only. Furthermore, the amplitude of SPWs positively correlated with the level of maximum excitation of the local neuronal network in both segments of the hippocampus, and the local network excitability and inhibition in the ventral but not the dorsal hippocampus. Blockade of α5 subunit-containing GABAA receptor by L-655,708 significantly reduced the rate of occurrence of SPWs and enhanced the probability of their generation in the form of clusters in the ventral hippocampus without affecting activity in the dorsal hippocampus. The present evidence suggests that a dynamic upregulation of excitation and inhibition in the local neuronal network may significantly contribute to the generation of SPW-Rs, particularly in the ventral hippocampus.


Assuntos
Região CA1 Hipocampal , Hipocampo , Potenciais de Ação , Animais , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos , Receptores de GABA-A/metabolismo
6.
Mol Cell Neurosci ; 107: 103531, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32711112

RESUMO

Sharp waves and ripples (SPW-Rs) are endogenous transient patterns of hippocampus local network activity implicated in several functions including memory consolidation, and they are diversified between the dorsal and the ventral hippocampus. Ion channels in the neuronal membrane play important roles in cell and local network function. In this study, using transverse slices and field potential recordings from the CA1 field of rat hippocampus we show that GIRK and KCNQ2/3 potassium channels play a higher role in modulating SPW-Rs in the dorsal hippocampus, while Ih and other KCNQ (presumably KCNQ5) channels, contribute to shaping SPW-R activity more in the ventral than in dorsal hippocampus. Specifically, blockade of Ih channels by ZD 7288 reduced the rate of occurrence of SPW-Rs and increased the generation of SPW-Rs in the form of clusters in both hippocampal segments, while enhanced the amplitude of SPW-Rs only in the ventral hippocampus. Most effects of ZD 7288 appeared to be independent of NMDA receptors' activity. However, the effects of blockade of NMDA receptors depended on the functional state of Ih channels in both hippocampal segments. Blockade of GIRK channels by Tertiapin-Q increased the rate of occurrence of SPW-Rs only in the dorsal hippocampus and the probability of clusters in both segments of the hippocampus. Blockade of KCNQ2/3 channels by XE 991 increased the rate of occurrence of SPW-Rs and the probability of clusters in the dorsal hippocampus, and only reduced the clustered generation of SPW-Rs in the ventral hippocampus. The blocker of KCNQ1/2 channels, that also enhances KCNQ5 channels, UCL 2077, increased the probability of clusters and the power of the ripple oscillation in the ventral hippocampus only. These results suggest that GIRK, KCNQ and Ih channels represent a key mechanism for modulation of SPW-R activity which act differently in the dorsal and ventral hippocampus, fundamentally supporting functional diversification along the dorsal-ventral axis of the hippocampus.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Hipocampo/metabolismo , Masculino , Neurônios/fisiologia , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Adv Exp Med Biol ; 988: 235-247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28971403

RESUMO

Abnormal synaptic homeostasis in the cerebral cortex represents a risk factor for both psychiatric and neurodegenerative disorders, from autism and schizophrenia to Alzheimer's disease. Neurons via synapses form recurrent networks that are intrinsically active in the form of oscillating activity, visible at increasingly macroscopic neurophysiological levels: from single cell recordings to the local field potentials (LFPs) to the clinically relevant electroencephalography (EEG). Understanding in animal models the defects at the level of neural circuits is important in order to link molecular and cellular phenotypes with behavioral phenotypes of neurodevelopmental and/or neurodegenerative brain disorders. In this study we introduce the novel idea that recurring persistent network activity (Up states) in the neocortex at the reduced level of the brain slice may be used as an endophenotype of brain disorders that will help us understand not only how local microcircuits of the cortex may be affected in brain diseases, but also when, since an important issue for the design of successful treatment strategies concerns the time window available for intervention.


Assuntos
Encéfalo/fisiologia , Neocórtex/fisiologia , Rede Nervosa , Animais , Encéfalo/fisiopatologia , Eletroencefalografia , Neurônios/fisiologia , Fenótipo , Sinapses/fisiologia
8.
Cell Signal ; 21(7): 1218-28, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19324084

RESUMO

In vitro studies have shown that the Regulator of G protein Signaling 4 (RGS4) interacts with the C-termini of mu- and delta-opioid receptors (mu-OR, delta-OR) (Georgoussi et al., 2006, Cell. Signal.18, 771-782). Herein we demonstrate that RGS4 associates with these receptors in living cells and forms selective complexes with Gi/Go proteins in a receptor dependent manner. This interaction occurs within the predicted fourth intracellular loop of mu, delta-ORs as part of a signaling complex consisting of the opioid receptor, activated Galpha and RGS4. RGS4 is recruited to the plasma membrane upon opioid receptor stimulation. Expression of RGS4 in HEK293 cells attenuated agonist-mediated extracellular signal regulated kinase (ERK1,2) phosphorylation for both receptors and accelerated agonist-induced internalization of the delta-OR. RGS4 lacking its N-terminal domain failed to interact with both opioid receptors and to modulate opioid receptor signaling. Our findings demonstrate that RGS4 plays a key role in G protein coupling selectivity and signaling of the mu- and delta-OmicronRs.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Inibidores de Adenilil Ciclases , Sequência de Aminoácidos , Animais , Sequência Conservada , Endocitose , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores Opioides delta/química , Receptores Opioides mu/química , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...