Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hum Reprod ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733100

RESUMO

STUDY QUESTION: Are maternal levels of moderate-to-vigorous physical activity (MVPA) and sedentary time (ST) in obese pregnant women associated with placental structural adaptations for facilitating oxygen delivery to the fetus? SUMMARY ANSWER: Higher maternal MVPA and ST are associated with a higher density of villi, a proxy measure of placental surface area for oxygen delivery to the fetus, without further added placental vessels. WHAT IS KNOWN ALREADY: Physical activity during pregnancy intermittently reduces uterine blood flow, potentially limiting placental and fetal oxygen supply. The placenta can mount several adaptive responses, including enlargement of the surface area of villi and/or feto-placental vessels to accommodate fetal needs. Early research on the morphology and growth of the placenta with exercise interventions has shown inconsistencies and is lacking, particularly in non-lean pregnant women. STUDY DESIGN, SIZE, DURATION: This study is a secondary longitudinal analysis of the vitamin D and lifestyle intervention for gestational diabetes prevention (DALI) randomized controlled trial. The prospective study was conducted between 2012 and 2015 in nine European countries at 11 different sites. In this analysis, 92 pregnant women with a BMI ≥ 29 kg/m2 were combined into one cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS: MVPA and percentage of time spent sedentary (% ST) were measured with accelerometers during gestation. Placental sections were immunostained for endothelial cell-specific CD34. Artificial intelligence (AI)-based stereology assessed villous density, number, and cross-sectional area of vessels on whole-slide images and in selected regions comprising peripheral villi only, where the majority of vascular adaptations occur. Expression of pro- and anti-angiogenic factors was quantified using molecular counting analysis. MAIN RESULTS AND THE ROLE OF CHANCE: In multivariable regression, higher levels of maternal MVPA (min/day) were associated with a higher density of villi in both whole-slide images (beta 0.12; 95% CI 0.05, 0.2) and selected regions (0.17; CI 0.07, 0.26). Unexpectedly, ST was also positively associated with density of villi (0.23; CI 0.04, 0.43). MVPA and ST were not associated with vessel count/mm2 villous area, vessel area, or pro- and anti-angiogenic factor mRNA expression. All estimates and statistical significance of the sensitivity analyses excluding smokers, women who developed gestational diabetes or pre-eclampsia and/or pregnancy-induced hypertension were similar in the main analysis. LIMITATIONS, REASONS FOR CAUTION: The placenta is a complex organ undergoing dynamic changes. While various adjustments were made to account for different maternal contributing factors, in addition to the outcome measures, various other factors could impact oxygen delivery to the fetus. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, we evaluated the association between placental structures quantified using an AI-based approach with objectively measured physical activity and ST at multiple time points in pregnant women with obesity. The observed adaptations contribute to the advancement of our understanding of the hemodynamics and adaptations of the placental unit in response to MVPA and ST. However, our results might not be generalizable to lean pregnant women. STUDY FUNDING/COMPETING INTEREST(S): The DALI project has received funding from the European Community's 7th Framework Program (FP7/2007-2013) under grant agreement no. 242187. The funders had no role in study design, collection of data, analyses, writing of the article, or the decision to submit it for publication. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: ISRCTN70595832.

2.
J Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776074

RESUMO

In utero exposure to gestational diabetes mellitus (GDM) programs the fetus, increasing offspring risk for endothelial dysfunction and cardiovascular disease later in life. Hyperglycaemia is widely recognized as the driving force of diabetes-induced programming. We have previously shown that GDM exposure alters DNA methylation and gene expression associated with actin remodelling in primary feto-placental arterial endothelial cells (fpEC). Thus, we hypothesized that hyperglycaemic insults underlie programmed changes in fpEC morphology and actin organization by GDM. Therefore, arterial fpECs isolated after normal and GDM pregnancy, as well as normal fpECs that were exposed to hyperglycaemia in vitro, were analysed for the effect of GDM and hyperglycaemia on actin organization and network formation. Integration of gene expression and DNA methylation data identified the RhoA activator active BCR-related (ABR) as programmed by GDM and altered by in vitro hyperglycaemia. ABR silencing in GDM-exposed cells reduced RhoA activity by 34 ± 26% (P = 0.033) and restored normal fpEC phenotype. In fact, in vitro hyperglycaemia induced a similar fpEC phenotype as intrauterine exposure to GDM, i.e. round morphology and increased network formation on Matrigel by 34 ± 33% (P = 0.022) vs. 22 ± 20% for GDM (P = 0.004). Thus, we identified ABR as a novel glucose sensitive regulator of actin organization and cell shape, programmed by GDM and upregulated by hyperglycaemia. Identification of mechanisms induced by hyperglycaemia and affecting endothelial function in the long term will contribute to understanding GDM-induced programming of offspring endothelial dysfunction and cardiovascular disease. Future studies could focus on investigating the prevention or reversal of such malprogramming. KEY POINTS: In utero exposure to gestational diabetes mellitus (GDM) affects future health of the offspring, with an increased risk for endothelial dysfunction and cardiovascular disease in later life. GDM alters DNA methylation and expression of ABR in feto-placental arterial endothelial cells (fpEC), a model for endothelial cells exposed to the intrauterine environment of the fetus. GDM phenotype of fpECs is also induced by hyperglycaemia in vitro, and is characterized by altered actin organization and cell shape, which can be restored by ABR silencing. Revealing the cellular mechanisms induced by GDM and hyperglycaemia is important for understanding the mechanisms of how these conditions disturb endothelial function in the offspring.

3.
Biomedicines ; 10(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35625806

RESUMO

Regular moderate-to-vigorous physical activity (MVPA) and reduced sedentary time (ST) improve maternal glucose metabolism in pregnancy. More MVPA and less ST outside pregnancy increase antioxidant capacity, hence, are beneficial in preventing oxidative stress. The placenta is the first line of defense for the fetus from an adverse maternal environment, including oxidative stress. However, effects of MVPA and ST on oxidative stress markers in the placenta are unknown. The purpose of this study was to assess the association of MVPA and ST in pregnancy with oxidative stress markers in placentas of overweight/obese women (BMI ≥ 29 kg/m2). MVPA and ST were objectively measured with accelerometers at <20 weeks, 24−27 and 35−37 weeks of gestation. Using linear Bayesian multilevel models, the associations of MVPA and ST (mean and changes) with mRNA expression of a panel of 11 oxidative stress related markers were assessed in 96 women. MVPA was negatively correlated with HSP70 mRNA expression in a sex-independent manner and with GCLM expression only in placentas of female fetuses. ST was positively associated with HO-1 mRNA expression in placentas of male neonates. None of the other markers were associated with MVPA or ST. We speculate that increasing MVPA and reducing ST attenuates the oxidative stress state in placentas of obese pregnant women.

4.
Pediatr Res ; 92(6): 1590-1597, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35184136

RESUMO

BACKGROUND: Maternal cardiovascular risk factors (CVRF) in pregnancy, i.e., obesity and hyperglycemia, transmit to the fetus and affect placental and fetal endothelial function. Moreover, a sex dimorphism in endothelial function and susceptibility towards CVRF exists already in utero. Endothelial colony-forming cells (ECFC) are circulating endothelial progenitors highly present in neonatal cord blood and sensitive to CVRF. This study investigated whether fetal sex or subtle maternal metabolic changes within healthy range alter fetal ECFC outgrowth. METHODS: Outgrowth of ECFC from cord blood of male (n = 31) and female (n = 26) neonates was analyzed after healthy pregnancies and related to fetal sex and maternal metabolic parameters. RESULTS: Male ECFC grew out earlier (-20.57% days; p = 0.031) than female. Although all women were non-diabetic, higher levels of fasting plasma glucose (FPG) at midpregnancy increased the time required for colony outgrowth (OR: 1.019; p = 0.030), which, after stratifying for fetal sex, was significant only in the males. Gestational weight gain and BMI did not affect outgrowth. Colony number was unchanged by all parameters. CONCLUSIONS: Fetal sex and maternal FPG within normal range alter ECFC function in utero. A role of ECFC in postnatal angiogenesis and vasculogenesis has been suggested, which may be affected by altered outgrowth dynamics. IMPACT: This study is the first to report that a sexual dimorphism exists in ECFC function, as cells of female progeny require a longer period of time until colony outgrowth than ECFC of male progeny. Our data show that ECFC function is highly sensitive and affected by maternal glucose levels even in a normal, non-diabetic range. Our data raise the question of whether maternal plasma glucose in pregnancy should be considered to play a critical role even in the non-diabetic setting.


Assuntos
Células Progenitoras Endoteliais , Recém-Nascido , Humanos , Feminino , Masculino , Gravidez , Glucose , Sangue Fetal , Glicemia/metabolismo , Células Cultivadas , Placenta , Jejum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...