Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 25(5): 205-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22355150

RESUMO

Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.


Assuntos
Imunoglobulinas/química , Engenharia de Proteínas , Dobramento de Proteína , Proteínas/química , Conectina , Epitopos/imunologia , Escherichia coli/metabolismo , Proteínas Musculares/química , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos , Peptídeos/imunologia , Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese
2.
Nano Lett ; 10(11): 4533-7, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20954695

RESUMO

The development of biomatrices for technological and biomedical applications employs self-assembled scaffolds built from short peptidic motifs. However, biopolymers composed of protein domains would offer more varied molecular frames to introduce finer and more complex functionalities in bioreactive scaffolds using bottom-up approaches. Yet, the rules governing the three-dimensional organization of protein architectures in nature are complex and poorly understood. As a result, the synthetic fabrication of ordered protein association into polymers poses major challenges to bioengineering. We have now fabricated a self-assembling protein nanofiber with predictable morphologies and amenable to bottom-up customization, where features supporting function and assembly are spatially segregated. The design was inspired by the cross-linking of titin filaments by telethonin in the muscle sarcomere. The resulting fiber is a two-protein system that has nanopatterned peptide display capabilities as shown by the recruitment of functionalized gold nanoparticles at regular intervals of ∼ 5 nm, yielding a semiregular linear array over micrometers. This polymer promises the uncomplicated display of biologically active motifs to selectively bind and organize matter in the fine nanoscale. Further, its conceptual design has high potential for controlled plurifunctionalization.


Assuntos
Nanoestruturas/química , Biblioteca de Peptídeos , Polímeros/química , Proteínas/síntese química , Sequência de Aminoácidos , Desenho de Equipamento , Análise de Falha de Equipamento , Dados de Sequência Molecular , Tamanho da Partícula , Peptídeos/química
3.
Biochemistry ; 45(47): 14111-9, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17115706

RESUMO

The prototypical tryptophan synthase is a stable heterotetrameric alpha-betabeta-alpha complex. The constituting TrpA and TrpB1 subunits, which are encoded by neighboring genes in the trp operon, activate each other in a bi-directional manner. Recently, a novel class of TrpB2 proteins has been identified, whose members contain additional amino acids that might sterically prevent complex formation with TrpA. To test this hypothesis, we characterized the TrpA and TrpB proteins from Sulfolobus solfataricus. This hyperthermophilic archaeon does not contain a TrpB1 protein but instead contains two TrpB2 homologues that are encoded within (TrpB2i) and outside (TrpB2o) the trp operon. We find that TrpB2i and TrpA form a weak and transient complex during catalysis, with a uni-directional activation of TrpA by TrpB2i. In contrast, TrpB2o and TrpA do not form a detectable complex. These results suggest a model for the evolution of the tryptophan synthase in which TrpB2o, TrpB2i, and TrpB1 reflect the stepwise increase of TrpB affinity for TrpA and the refinement of functional subunit interaction, concomitant with the co-localization of the encoding genes in the trp operon.


Assuntos
Proteínas Arqueais/metabolismo , Triptofano Sintase/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Catálise , Eletroforese em Gel de Poliacrilamida , Cinética , L-Serina Desidratase/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/enzimologia , Triptofano Sintase/química
4.
J Mol Biol ; 337(4): 871-9, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15033357

RESUMO

The (betaalpha)(8)-barrel enzymes N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide isomerase (tHisA) and imidazole glycerol phosphate synthase (tHisF) from Thermotoga maritima catalyze two successive reactions in the biosynthesis of histidine. In both enzymes, aspartate residues at the C-terminal end of beta-strand 1 (Asp8 in tHisA and Asp11 in tHisF) and beta-strand 5 (Asp127 in tHisA and Asp130 in tHisF) are essential for catalytic activity. It was demonstrated earlier that in tHisA the substitution of Asp127 by valine (tHisA-D127V) generates phosphoribosylanthranilate isomerase (TrpF) activity, a related (betaalpha)(8)-barrel enzyme participating in tryptophan biosynthesis. It is shown here that in tHisF the corresponding substitution of Asp130 by valine (tHisF-D130V) also generates TrpF activity. To determine the effectiveness of individual amino acid exchanges in these conversions, each of the 20 standard amino acid residues was introduced at position 127 of tHisA and 130 of tHisF by saturation random mutagenesis. The tHisA-D127X and tHisF-D130X variants with TrpF activity were identified by selection in vivo, and the proteins purified and characterized. The results obtained show that removal of the negatively charged carboxylate side-chain at the C-terminal end of beta-strand 5 is sufficient to establish TrpF activity in tHisA and tHisF, presumably because it allows the binding of the negatively charged TrpF substrate, phosphoribosylanthranilate. In contrast, the double mutants tHisA-D8N+D127V and tHisF-D11N+D130V did not show detectable activity, demonstrating that the aspartate residues at the C-terminal end of beta-strand 1 are essential for catalysis of the TrpF reaction. The ease with which TrpF activity can be established on both the tHisA and tHisF scaffolds supports the evolutionary relationship of these three enzymes and highlights the functional plasticity of the (betaalpha)(8)-barrel enzyme fold.


Assuntos
Aldose-Cetose Isomerases/deficiência , Enzimas/metabolismo , Evolução Molecular , Aldose-Cetose Isomerases/genética , Sequência de Aminoácidos , Aminoidrolases/deficiência , Aminoidrolases/genética , Enzimas/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...