Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401198

RESUMO

Copy number alterations (CNAs) play an important role in molding the genomes of breast cancers and have been shown to be clinically useful for prognostic and therapeutic purposes. However, our knowledge of intra-tumoral genetic heterogeneity of this important class of somatic alterations is limited. Here, using single-cell sequencing, we comprehensively map out the facets of copy number alteration heterogeneity in a cohort of breast cancer tumors. Ou/var/www/html/elife/12-05-2020/backup/r analyses reveal: genetic heterogeneity of non-tumor cells (i.e. stroma) within the tumor mass; the extent to which copy number heterogeneity impacts breast cancer genomes and the importance of both the genomic location and dosage of sub-clonal events; the pervasive nature of genetic heterogeneity of chromosomal amplifications; and the association of copy number heterogeneity with clinical and biological parameters such as polyploidy and estrogen receptor negative status. Our data highlight the power of single-cell genomics in dissecting, in its many forms, intra-tumoral genetic heterogeneity of CNAs, the magnitude with which CNA heterogeneity affects the genomes of breast cancers, and the potential importance of CNA heterogeneity in phenomena such as therapeutic resistance and disease relapse.


Cells in the body remain healthy by tightly preventing and repairing random changes, or mutations, in their genetic material. In cancer cells, however, these mechanisms can break down. When these cells grow and multiply, they can then go on to accumulate many mutations. As a result, cancer cells in the same tumor can each contain a unique combination of genetic changes. This genetic heterogeneity has the potential to affect how cancer responds to treatment, and is increasingly becoming appreciated clinically. For example, if a drug only works against cancer cells carrying a specific mutation, any cells lacking this genetic change will keep growing and cause a relapse. However, it is still difficult to quantify and understand genetic heterogeneity in cancer. Copy number alterations (or CNAs) are a class of mutation where large and small sections of genetic material are gained or lost. This can result in cells that have an abnormal number of copies of the genes in these sections. Here, Baslan et al. set out to explore how CNAs might vary between individual cancer cells within the same tumor. To do so, thousands of individual cancer cells were isolated from human breast tumors, and a technique called single-cell genome sequencing used to screen the genetic information of each of them. These experiments confirmed that CNAs did differ ­ sometimes dramatically ­ between patients and among cells taken from the same tumor. For example, many of the cells carried extra copies of well-known cancer genes important for treatment, but the exact number of copies varied between cells. This heterogeneity existed for individual genes as well as larger stretches of DNA: this was the case, for instance, for an entire section of chromosome 8, a region often affected in breast and other tumors. The work by Baslan et al. captures the sheer extent of genetic heterogeneity in cancer and in doing so, highlights the power of single-cell genome sequencing. In the future, a finer understanding of the genetic changes present at the level of an individual cancer cell may help clinicians to manage the disease more effectively.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Heterogeneidade Genética , Genômica , Análise de Célula Única , Sequenciamento Completo do Genoma , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Ensaios Clínicos Fase II como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Fenótipo , Prognóstico , RNA-Seq
2.
Genome Res ; 25(5): 714-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25858951

RESUMO

Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination requires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can produce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility, and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily accessible tool for studying cell lineage.


Assuntos
Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Algoritmos , Sequência de Bases , Linhagem Celular Tumoral , Genoma Humano , Humanos , Dados de Sequência Molecular
3.
Nature ; 515(7526): 216-21, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363768

RESUMO

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , Mutação/genética , Fases de Leitura Aberta/genética , Criança , Análise por Conglomerados , Exoma/genética , Feminino , Genes , Humanos , Testes de Inteligência , Masculino , Reprodutibilidade dos Testes
4.
Hum Genet ; 133(1): 11-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23979609

RESUMO

Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.


Assuntos
Variações do Número de Cópias de DNA/genética , Cardiopatias Congênitas/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Deleção de Genes , Duplicação Gênica , Genoma Humano , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Reprodutibilidade dos Testes
5.
Am J Hum Genet ; 91(2): 379-83, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22863192

RESUMO

Although heritable factors are an important determinant of risk of early-onset cancer, the majority of these malignancies appear to occur sporadically without identifiable risk factors. Germline de novo copy-number variations (CNVs) have been observed in sporadic neurocognitive and cardiovascular disorders. We explored this mechanism in 382 genomes of 116 early-onset cancer case-parent trios and unaffected siblings. Unique de novo germline CNVs were not observed in 107 breast or colon cancer trios or controls but were indeed found in 7% of 43 testicular germ cell tumor trios; this percentage exceeds background CNV rates and suggests a rare de novo genetic paradigm for susceptibility to some human malignancies.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Genômica/métodos , Mutação em Linhagem Germinativa/genética , Neoplasias Testiculares/genética , Adulto , Humanos , Masculino , Pais , Projetos de Pesquisa
6.
Neuron ; 74(2): 285-99, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22542183

RESUMO

Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Predisposição Genética para Doença , Mutação/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/etiologia , Pré-Escolar , Saúde da Família , Feminino , Dosagem de Genes , Estudos de Associação Genética , Humanos , Masculino , Modelos Moleculares , Pais , Fenótipo
7.
Proc Natl Acad Sci U S A ; 109(3): E103-10, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22207624

RESUMO

Genomic copy number variation underlies genetic disorders such as autism, schizophrenia, and congenital heart disease. Copy number variations are commonly detected by array based comparative genomic hybridization of sample to reference DNAs, but probe and operational variables combine to create correlated system noise that degrades detection of genetic events. To correct for this we have explored hybridizations in which no genetic signal is expected, namely "self-self" hybridizations (SSH) comparing DNAs from the same genome. We show that SSH trap a variety of correlated system noise present also in sample-reference (test) data. Through singular value decomposition of SSH, we are able to determine the principal components (PCs) of this noise. The PCs themselves offer deep insights into the sources of noise, and facilitate detection of artifacts. We present evidence that linear and piecewise linear correction of test data with the PCs does not introduce detectable spurious signal, yet improves signal-to-noise metrics, reduces false positives, and facilitates copy number determination.


Assuntos
Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Hibridização Genética , Sondas de DNA/metabolismo , Genoma Humano/genética , Humanos , Masculino , Análise de Componente Principal , Padrões de Referência
8.
Neuron ; 70(5): 886-97, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21658582

RESUMO

To explore the genetic contribution to autistic spectrum disorders (ASDs), we have studied genomic copy-number variation in a large cohort of families with a single affected child and at least one unaffected sibling. We confirm a major contribution from de novo deletions and duplications but also find evidence of a role for inherited "ultrarare" duplications. Our results show that, relative to males, females have greater resistance to autism from genetic causes, which raises the question of the fate of female carriers. By analysis of the proportion and number of recurrent loci, we set a lower bound for distinct target loci at several hundred. We find many new candidate regions, adding substantially to the list of potential gene targets, and confirm several loci previously observed. The functions of the genes in the regions of de novo variation point to a great diversity of genetic causes but also suggest functional convergence.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Variações do Número de Cópias de DNA/genética , Saúde da Família , Deleção de Genes , Predisposição Genética para Doença/genética , Neurotransmissores/genética , Criança , Pré-Escolar , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Modelos Estatísticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Probabilidade , Irmãos
9.
G3 (Bethesda) ; 1(1): 35-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22384316

RESUMO

Accurate information on haplotypes and diplotypes (haplotype pairs) is required for population-genetic analyses; however, microarrays do not provide data on a haplotype or diplotype at a copy number variation (CNV) locus; they only provide data on the total number of copies over a diplotype or an unphased sequence genotype (e.g., AAB, unlike AB of single nucleotide polymorphism). Moreover, such copy numbers or genotypes are often incorrectly determined when microarray signal intensities derived from different copy numbers or genotypes are not clearly separated due to noise. Here we report an algorithm to infer CNV haplotypes and individuals' diplotypes at multiple loci from noisy microarray data, utilizing the probability that a signal intensity may be derived from different underlying copy numbers or genotypes. Performing simulation studies based on known diplotypes and an error model obtained from real microarray data, we demonstrate that this probabilistic approach succeeds in accurate inference (error rate: 1-2%) from noisy data, whereas previous deterministic approaches failed (error rate: 12-18%). Applying this algorithm to real microarray data, we estimated haplotype frequencies and diplotypes in 1486 CNV regions for 100 individuals. Our algorithm will facilitate accurate population-genetic analyses and powerful disease association studies of CNVs.

10.
Nat Genet ; 41(11): 1223-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19855392

RESUMO

Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders. We report the association of 16p11.2 microduplications with schizophrenia in two large cohorts. The microduplication was detected in 12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls (P = 1.2 x 10(-5), OR = 25.8) from the initial cohort, and in 9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls (P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 microduplication was associated with a 14.5-fold increased risk of schizophrenia (95% CI (3.3, 62)) in the combined sample. A meta-analysis of datasets for multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia (P = 4.8 x 10(-7)), bipolar disorder (P = 0.017) and autism (P = 1.9 x 10(-7)). In contrast, the reciprocal microdeletion was associated only with autism and developmental disorders (P = 2.3 x 10(-13)). Head circumference was larger in patients with the microdeletion than in patients with the microduplication (P = 0.0007).


Assuntos
Cromossomos Humanos Par 16 , Duplicação Gênica , Predisposição Genética para Doença , Esquizofrenia/genética , Humanos , Fatores de Risco
11.
Proc Natl Acad Sci U S A ; 104(31): 12831-6, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17652511

RESUMO

Autism is among the most clearly genetically determined of all cognitive-developmental disorders, with males affected more often than females. We have analyzed autism risk in multiplex families from the Autism Genetic Resource Exchange (AGRE) and find strong evidence for dominant transmission to male offspring. By incorporating generally accepted rates of autism and sibling recurrence, we find good fit for a simple genetic model in which most families fall into two types: a small minority for whom the risk of autism in male offspring is near 50%, and the vast majority for whom male offspring have a low risk. We propose an explanation that links these two types of families: sporadic autism in the low-risk families is mainly caused by spontaneous mutation with high penetrance in males and relatively poor penetrance in females; and high-risk families are from those offspring, most often females, who carry a new causative mutation but are unaffected and in turn transmit the mutation in dominant fashion to their offspring.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Predisposição Genética para Doença/genética , Transtorno Autístico/classificação , Transtorno Autístico/epidemiologia , Bases de Dados Factuais , Feminino , Humanos , Masculino , Modelos Genéticos , Fatores de Risco , Caracteres Sexuais , Sociedades Médicas
12.
Science ; 316(5823): 445-9, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17363630

RESUMO

We tested the hypothesis that de novo copy number variation (CNV) is associated with autism spectrum disorders (ASDs). We performed comparative genomic hybridization (CGH) on the genomic DNA of patients and unaffected subjects to detect copy number variants not present in their respective parents. Candidate genomic regions were validated by higher-resolution CGH, paternity testing, cytogenetics, fluorescence in situ hybridization, and microsatellite genotyping. Confirmed de novo CNVs were significantly associated with autism (P = 0.0005). Such CNVs were identified in 12 out of 118 (10%) of patients with sporadic autism, in 2 out of 77 (3%) of patients with an affected first-degree relative, and in 2 out of 196 (1%) of controls. Most de novo CNVs were smaller than microscopic resolution. Affected genomic regions were highly heterogeneous and included mutations of single genes. These findings establish de novo germline mutation as a more significant risk factor for ASD than previously recognized.


Assuntos
Transtorno Autístico/genética , Dosagem de Genes , Genoma Humano , Mutação , Síndrome de Asperger/genética , Estudos de Casos e Controles , Criança , Análise Citogenética , Feminino , Deleção de Genes , Duplicação Gênica , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Hibridização in Situ Fluorescente , Masculino , Cadeias de Markov , Repetições de Microssatélites , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Pais , Irmãos
13.
Proc Natl Acad Sci U S A ; 103(30): 11234-9, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16844783

RESUMO

Genomic amplifications and deletions, the consequence of somatic variation, are a hallmark of human cancer. Such variation has also been observed between "normal" individuals, as well as in individuals with congenital disorders. Thus, copy number measurement is likely to be an important tool for the analysis of genetic variation, genetic disease, and cancer. We developed representational oligonucleotide microarray analysis, a high-resolution comparative genomic hybridization methodology, with this aim in mind, and reported its use in the study of humans. Here we report the development of a representational oligonucleotide microarray analysis microarray for the genomic analysis of the mouse, an important model system for many genetic diseases and cancer. This microarray was designed based on the sequence assembly MM3, and contains approximately 84,000 probes randomly distributed throughout the mouse genome. We demonstrate the use of this array to identify copy number changes in mouse cancers, as well to determine copy number variation between inbred strains of mice. Because restriction endonuclease digestion of genomic DNA is an integral component of our method, differences due to polymorphisms at the restriction enzyme cleavage sites are also observed between strains, and these can be useful to follow the inheritance of loci between crosses of different strains.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/química , Animais , Cruzamentos Genéticos , Genoma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Hibridização de Ácido Nucleico , Polimorfismo Genético , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...