Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1719, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409205

RESUMO

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm-2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

2.
Nat Commun ; 15(1): 1218, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336956

RESUMO

Renewable electricity powered electrochemical CO2 reduction (CO2R) offers a valuable method to close the carbon cycle and reduce our overreliance on fossil fuels. However, high purity CO2 is usually required as feedstock, which potentially decreases the feasibility and economic viability of the process. Direct conversion of flue gas is an attractive option but is challenging due to the low CO2 concentration and the presence of O2 impurities. As a result, up to 99% of the applied current can be lost towards the undesired oxygen reduction reaction (ORR). Here, we show that acidic electrolyte can significantly suppress ORR on Cu, enabling generation of multicarbon products from simulated flue gas. Using a composite Cu and carbon supported single-atom Ni tandem electrocatalyst, we achieved a multicarbon Faradaic efficiency of 46.5% at 200 mA cm-2, which is ~20 times higher than bare Cu under alkaline conditions. We also demonstrate stable performance for 24 h with a multicarbon product full-cell energy efficiency of 14.6%. Strikingly, this result is comparable to previously reported acidic CO2R systems using pure CO2. Our findings demonstrate a potential pathway towards designing efficient electrolyzers for direct conversion of flue gas to value-added chemicals and fuels.

3.
Nat Commun ; 14(1): 1954, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029102

RESUMO

Chemicals manufacture is among the top greenhouse gas contributors. More than half of the associated emissions are attributable to the sum of ammonia plus oxygenates such as methanol, ethylene glycol and terephthalic acid. Here we explore the impact of electrolyzer systems that couple electrically-powered anodic hydrocarbon-to-oxygenate conversion with cathodic H2 evolution reaction from water. We find that, once anodic hydrocarbon-to-oxygenate conversion is developed with high selectivities, greenhouse gas emissions associated with fossil-based NH3 and oxygenates manufacture can be reduced by up to 88%. We report that low-carbon electricity is not mandatory to enable a net reduction in greenhouse gas emissions: global chemical industry emissions can be reduced by up to 39% even with electricity having the carbon footprint per MWh available in the United States or China today. We conclude with considerations and recommendations for researchers who wish to embark on this research direction.

4.
Adv Mater ; 34(4): e2106212, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738253

RESUMO

Memristors constitute a promising functional component for information storage and in-memory computing in flexible and stretchable electronics including wearable devices, prosthetics, and soft robotics. Despite tremendous efforts made to adapt conventional rigid memristors to flexible and stretchable scenarios, stretchable and mechanical-damage-endurable memristors, which are critical for maintaining reliable functions under unexpected mechanical attack, have never been achieved. Here, the development of stretchable memristors with mechanical damage endurance based on a discrete structure design is reported. The memristors possess large stretchability (40%) and excellent deformability (half-fold), and retain stable performances under dynamic stretching and releasing. It is shown that the memristors maintain reliable functions and preserve information after extreme mechanical damage, including puncture (up to 100 times) and serious tearing situations (fully diagonally cut). The structural strategy offers new opportunities for next-generation stretchable memristors with mechanical damage endurance, which is vital to achieve reliable functions for flexible and stretchable electronics even in extreme and highly dynamic environments.

5.
J Am Chem Soc ; 143(41): 17226-17235, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617746

RESUMO

We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH3) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C-OCH3 bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm-2, representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.

6.
Science ; 368(6496): 1228-1233, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32527828

RESUMO

Chemicals manufacturing consumes large amounts of energy and is responsible for a substantial portion of global carbon emissions. Electrochemical systems that produce the desired compounds by using renewable electricity offer a route to lower carbon emissions in the chemicals sector. Ethylene oxide is among the world's most abundantly produced commodity chemicals because of its importance in the plastics industry, notably for manufacturing polyesters and polyethylene terephthalates. We applied an extended heterogeneous:homogeneous interface, using chloride as a redox mediator at the anode, to facilitate the selective partial oxidation of ethylene to ethylene oxide. We achieved current densities of 1 ampere per square centimeter, Faradaic efficiencies of ~70%, and product specificities of ~97%. When run at 300 milliamperes per square centimeter for 100 hours, the system maintained a 71(±1)% Faradaic efficiency throughout.

7.
Nat Commun ; 11(1): 1332, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165612

RESUMO

Compared to transmission systems based on shafts and gears, tendon-driven systems offer a simpler and more dexterous way to transmit actuation force in robotic hands. However, current tendon fibers have low toughness and suffer from large friction, limiting the further development of tendon-driven robotic hands. Here, we report a super tough electro-tendon based on spider silk which has a toughness of 420 MJ/m3 and conductivity of 1,077 S/cm. The electro-tendon, mechanically toughened by single-wall carbon nanotubes (SWCNTs) and electrically enhanced by PEDOT:PSS, can withstand more than 40,000 bending-stretching cycles without changes in conductivity. Because the electro-tendon can simultaneously transmit signals and force from the sensing and actuating systems, we use it to replace the single functional tendon in humanoid robotic hand to perform grasping functions without additional wiring and circuit components. This material is expected to pave the way for the development of robots and various applications in advanced manufacturing and engineering.


Assuntos
Condutividade Elétrica , Seda/química , Aranhas/química , Tendões/fisiologia , Animais , Simulação por Computador , Retroalimentação , Humanos , Teste de Materiais , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Impressão Tridimensional , Robótica , Seda/ultraestrutura
8.
Adv Mater ; 32(12): e1907030, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072703

RESUMO

Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug-resistant pathogens. Although several strategies such as photothermal therapy and magneto-thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal-disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat-responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy.


Assuntos
Antibacterianos/química , Fototerapia , Infecções Estafilocócicas/terapia , Resinas Acrílicas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bandagens , Ouro/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Hidrogéis/química , Raios Infravermelhos/uso terapêutico , Nanopartículas Metálicas/química , Camundongos , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/veterinária
9.
Adv Mater ; 32(4): e1905399, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31803996

RESUMO

The emulation of human sensation, perception, and action processes has become a major challenge for bioinspired intelligent robotics, interactive human-machine interfacing, and advanced prosthetics. Reflex actions, enabled through reflex arcs, are important for human and higher animals to respond to stimuli from environment without the brain processing and survive the risks of nature. An artificial reflex arc system that emulates the functions of the reflex arc simplifies the complex circuit design needed for "central-control-only" processes and becomes a basic electronic component in an intelligent soft robotics system. An artificial somatic reflex arc that enables the actuation of electrochemical actuators in response to the stimulation of tactile pressures is reported. Only if the detected pressure by the pressure sensor is above the stimulus threshold, the metal-organic-framework-based threshold controlling unit (TCU) can be activated and triggers the electrochemical actuators to complete the motion. Such responding mechanism mimics the all-or-none law in the human nervous system. As a proof of concept, the artificial somatic reflex arc is successfully integrated into a robot to mimic the infant grasp reflex. This work provides a unique and simplifying strategy for developing intelligent soft robotics, next-generation human-machine interfaces, and neuroprosthetics.

10.
Nat Commun ; 10(1): 5814, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862886

RESUMO

Producing liquid fuels such as ethanol from CO2, H2O, and renewable electricity offers a route to store sustainable energy. The search for efficient electrocatalysts for the CO2 reduction reaction relies on tuning the adsorption strength of carbonaceous intermediates. Here, we report a complementary approach in which we utilize hydroxide and oxide doping of a catalyst surface to tune the adsorbed hydrogen on Cu. Density functional theory studies indicate that this doping accelerates water dissociation and changes the hydrogen adsorption energy on Cu. We synthesize and investigate a suite of metal-hydroxide-interface-doped-Cu catalysts, and find that the most efficient, Ce(OH)x-doped-Cu, exhibits an ethanol Faradaic efficiency of 43% and a partial current density of 128 mA cm-2. Mechanistic studies, wherein we combine investigation of hydrogen evolution performance with the results of operando Raman spectroscopy, show that adsorbed hydrogen hydrogenates surface *HCCOH, a key intermediate whose fate determines branching to ethanol versus ethylene.

11.
Nat Commun ; 10(1): 4807, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641126

RESUMO

The upgrading of CO2/CO feedstocks to higher-value chemicals via energy-efficient electrochemical processes enables carbon utilization and renewable energy storage. Substantial progress has been made to improve performance at the cathodic side; whereas less progress has been made on improving anodic electro-oxidation reactions to generate value. Here we report the efficient electroproduction of value-added multi-carbon dimethyl carbonate (DMC) from CO and methanol via oxidative carbonylation. We find that, compared to pure palladium controls, boron-doped palladium (Pd-B) tunes the binding strength of intermediates along this reaction pathway and favors DMC formation. We implement this doping strategy and report the selective electrosynthesis of DMC experimentally. We achieve a DMC Faradaic efficiency of 83 ± 5%, fully a 3x increase in performance compared to the corresponding pure Pd electrocatalyst.

12.
Angew Chem Int Ed Engl ; 58(11): 3521-3526, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30624844

RESUMO

MoS2 holds great promise as high-rate electrode for lithium-ion batteries since its large interlayer can allow fast lithium diffusion in 3.0-1.0 V. However, the low theoretical capacity (167 mAh g-1 ) limits its wide application. Here, by fine tuning the lithiation depth of MoS2 , we demonstrate that its parent layered structure can be preserved with expanded interlayers while cycling in 3.0-0.6 V. The deeper lithiation and maintained crystalline structure endows commercially micrometer-sized MoS2 with a capacity of 232 mAh g-1 at 0.05 A g-1 and circa 92 % capacity retention after 1000 cycles at 1.0 A g-1 . Moreover, the enlarged interlayers enable MoS2 to release a capacity of 165 mAh g-1 at 5.0 A g-1 , which is double the capacity obtained under 3.0-1.0 V at the same rate. Our strategy of controlling the lithiation depth of MoS2 to avoid fracture ushers in new possibilities to enhance the lithium storage of layered transition-metal dichalcogenides.

13.
Adv Mater ; 31(1): e1803883, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30334282

RESUMO

Tactile sensors capable of perceiving biophysical signals such as force, pressure, or strain have attracted extensive interest for versatile applications in electronic skin, noninvasive healthcare, and biomimetic prostheses. Despite these great achievements, they are still incapable of detecting bio/chemical signals that provide even more meaningful and precise health information due to the lack of efficient transduction principles. Herein, a tactile chemomechanical transduction strategy that enables the tactile sensor to perceive bio/chemical signals is proposed. In this methodology, pyramidal tactile sensors are linked with biomarker-induced gas-producing reactions, which transduce biomarker signals to electrical signals in real time. The method is advantageous as it enhances electrical signals by more than tenfold based on a triple-step signal amplification strategy, as compared to traditional electrical biosensors. It also constitutes a portable and general platform capable of quantifying a wide spectrum of targets including carcinoembryonic antigen, interferon-γ, and adenosine. Such tactile chemomechanical transduction would greatly broaden the application of tactile sensors toward bio/chemical signals perception which can be used in ultrasensitive portable biosensors and chemical-responsive chemomechanical systems.


Assuntos
Técnicas Biossensoriais/métodos , Transdutores , Adenosina/análise , Biomarcadores/metabolismo , Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Eletricidade , Gases/química , Gases/metabolismo , Interferon gama/análise , Nanopartículas Metálicas/química , Pressão , Tato
14.
Adv Mater ; 31(7): e1806385, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30556251

RESUMO

As emerging efficient emitters, metal-halide perovskites offer the intriguing potential to the low-cost light emitting devices. However, semiconductors generally suffer from severe luminescence quenching due to insufficient confinement of excitons (bound electron-hole pairs). Here, Sn-triggered extrinsic self-trapping of excitons in bulk 2D perovskite crystal, PEA2 PbI4 (PEA = phenylethylammonium), is reported, where exciton self-trapping never occurs in its pure state. By creating local potential wells, isoelectronic Sn dopants initiate the localization of excitons, which would further induce the large lattice deformation around the impurities to accommodate the self-trapped excitons. With such self-trapped states, the Sn-doped perovskites generate broadband red-to-near-infrared (NIR) emission at room temperature due to strong exciton-phonon coupling, with a remarkable quantum yield increase from 0.7% to 6.0% (8.6 folds), reaching 42.3% under a 100 mW cm-2 excitation by extrapolation. The quantum yield enhancement stems from substantial higher thermal quench activation energy of self-trapped excitons than that of free excitons (120 vs 35 meV). It is further revealed that the fast exciton diffusion involves in the initial energy transfer step by transient absorption spectroscopy. This dopant-induced extrinsic exciton self-trapping approach paves the way for extending the spectral range of perovskite emitters, and may find emerging application in efficient supercontinuum sources.

15.
Nat Commun ; 9(1): 3813, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232336

RESUMO

The development of ultrasensitive, anti-jamming, and durable sensors that can precisely distinguish different human body motions are of great importance for smart health monitoring and diagnosis. Physical implementation of such flexible sensors is still a challenge at the moment. Combining the designs of advanced material showing excellent electrochemical properties with the facilitative structure engineering, high-performance flexible sensors that satisfy both signal detecting and recognition requirements may be made possible. Here we report the first metal-organic framework-based strain sensor with accurate signal detection and noise-screening properties. Upon doping the tricarboxytriphenyl amine-based metal-organic framework nanofilm with iodine, the two-terminal device exhibits ultrahigh sensitivity with a gauge factor exceeding 10,000 in the 2.5% to 3.3% deformation range for over 5000 dynamic operating cycles and out-of-scale noise-screening capability. The high-performance strain sensor can easily differentiate the moderate muscle hyperspasmia from subtle swaying and vigorous sporting activities.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Estresse Mecânico , Cristalização , Eletricidade , Corpo Humano , Humanos , Simulação de Dinâmica Molecular , Movimento (Física)
16.
Adv Mater ; : e1802516, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971867

RESUMO

The increasing need for smart systems in healthcare, wearable, and soft robotics is creating demand for low-power sensory circuits that can detect pressure, temperature, strain, and other local variables. Among the most critical requirements, the matrix circuitry to address the individual sensor device must be sensitive, immune to disturbances, and flexible within a high-density sensory array. Here, a strategy is reported to enhance the matrix addressing of a fully integrated flexible sensory array with an improvement of 108 fold in the maximum readout value of impedance by a bidirectional threshold switch. The threshold switch shows high flexibility (bendable to a radius of about 1 mm) and a high nonlinearity of ≈1010 by using a nanocontact structure strategy, which is revealed and validated by molecular dynamics simulations and experiments at variable mechanical stress. Such a flexible electronic switch enables a new generation of large-scale flexible and stretchable electronic and optoelectronic systems.

17.
Angew Chem Int Ed Engl ; 57(31): 9780-9784, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29869422

RESUMO

Photoredox catalysis provides opportunities in harnessing clean and green resources such as sunlight and O2 , while the acid and base surface sites of metal oxides are critical for industrial catalysis such as oil cracking. The contribution of metal oxide surfaces towards photocatalytic aerobic reactions was elucidated, as demonstrated through the hydroxylation of boronic acids to alcohols. The strength and proximity of the surface base sites appeared to be two key factors in driving the reaction; basic and amphoteric oxides such as MgO, TiO2 , ZnO, and Al2 O3 enabled high alcohol yields, while acidic oxides such as SiO2 and B2 O3 gave only low yields. The reaction is tunable to different irradiation sources by merely selecting photosensitizers of compatible excitation wavelengths. Such surface complexation mechanisms between reactants and earth abundant materials can be effectively utilized to achieve a wider range of photoredox reactions.

18.
Adv Mater ; 30(31): e1800572, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29882230

RESUMO

The reciprocal mechanical interaction of engineered materials with biointerfaces have long been observed and exploited in biomedical applications. It contributes to the rise of biomechano-responsive materials and biomechano-stimulatory materials, constituting the biomechano-interactive interfaces. Here, endogenous and exogenous biomechanical stimuli available for mechanoresponsive interfaces are briefed and their mechanistic responses, including deformation and volume change, mechanomanipulation of physical and chemical bonds, dissociation of assemblies, and coupling with thermoresponsiveness are summarized. The mechanostimulatory materials, however, are capable of delivering mechanical cues, including stiffness, viscoelasticity, geometrical constraints, and mechanical loads, to modulate physiological and pathological behaviors of living tissues through the adaptive cellular mechanotransduction. The biomechano-interactive materials and interfaces are widely implemented in such fields as mechanotriggered therapeutics and diagnosis, adaptive biophysical sensors, biointegrated soft actuators, and mechanorobust tissue engineering, which have offered unprecedented opportunities for precision and personalized medicine. Pending challenges are also addressed to shed a light on future advances with respect to translational implementations.


Assuntos
Materiais Biocompatíveis/química , Animais , Portadores de Fármacos/química , Elasticidade , Mecanotransdução Celular , Nanopartículas/química , Engenharia Tecidual
19.
Adv Mater ; 30(26): e1707285, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29774617

RESUMO

Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics.

20.
Adv Mater ; 30(21): e1800129, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603437

RESUMO

Soft and stretchable electronic devices are important in wearable and implantable applications because of the high skin conformability. Due to the natural biocompatibility and biodegradability, silk protein is one of the ideal platforms for wearable electronic devices. However, the realization of skin-conformable electronic devices based on silk has been limited by the mechanical mismatch with skin, and the difficulty in integrating stretchable electronics. Here, silk protein is used as the substrate for soft and stretchable on-skin electronics. The original high Young's modulus (5-12 GPa) and low stretchability (<20%) are tuned into 0.1-2 MPa and > 400%, respectively. This plasticization is realized by the addition of CaCl2 and ambient hydration, whose mechanism is further investigated by molecular dynamics simulations. Moreover, highly stretchable (>100%) electrodes are obtained by the thin-film metallization and the formation of wrinkled structures after ambient hydration. Finally, the plasticized silk electrodes, with the high electrical performance and skin conformability, achieve on-skin electrophysiological recording comparable to that by commercial gel electrodes. The proposed skin-conformable electronics based on biomaterials will pave the way for the harmonized integration of electronics into human.


Assuntos
Seda , Materiais Biocompatíveis , Módulo de Elasticidade , Eletrodos , Humanos , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...