Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 689, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023467

RESUMO

BACKGROUND: MiRNAs play essential roles in plant development and response to biotic and abiotic stresses through interaction with their target genes. The expression level of miRNAs shows great variations among different plant accessions, developmental stages, and tissues. Little is known about the content within the plant genome contributing to the variations in plants. This study aims to identify miRNA expression-related quantitative trait loci (miR-QTLs) in the maize genome. RESULTS: The miRNA expression level from next generation sequencing (NGS) small RNA libraries derived from mature leaf samples of the maize panel (200 maize lines) was estimated as phenotypes, and maize Hapmap v3.2.1 was chosen as the genotype for the genome-wide association study (GWAS). A total of four significant miR-eQTLs were identified contributing to miR156k-5p, miR159a-3p, miR390a-5p and miR396e-5p, and all of them are trans-eQTLs. In addition, a strong positive coexpression of miRNA was found among five miRNA families. Investigation of the effects of these miRNAs on the expression levels and target genes provided evidence that miRNAs control the expression of their targets by suppression and enhancement. CONCLUSIONS: These identified significant miR-eQTLs contribute to the diversity of miRNA expression in the maize penal at the developmental stages of mature leaves in maize, and the positive and negative regulation between miRNA and its target genes has also been uncovered.


Assuntos
MicroRNAs/genética , Locos de Características Quantitativas , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla/métodos , MicroRNAs/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Nature ; 555(7697): 520-523, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539638

RESUMO

Here we report a multi-tissue gene expression resource that represents the genotypic and phenotypic diversity of modern inbred maize, and includes transcriptomes in an average of 255 lines in seven tissues. We mapped expression quantitative trait loci and characterized the contribution of rare genetic variants to extremes in gene expression. Some of the new mutations that arise in the maize genome can be deleterious; although selection acts to keep deleterious variants rare, their complete removal is impeded by genetic linkage to favourable loci and by finite population size. Modern maize breeders have systematically reduced the effects of this constant mutational pressure through artificial selection and self-fertilization, which have exposed rare recessive variants in elite inbred lines. However, the ongoing effect of these rare alleles on modern inbred maize is unknown. By analysing this gene expression resource and exploiting the extreme diversity and rapid linkage disequilibrium decay of maize, we characterize the effect of rare alleles and evolutionary history on the regulation of expression. Rare alleles are associated with the dysregulation of expression, and we correlate this dysregulation to seed-weight fitness. We find enrichment of ancestral rare variants among expression quantitative trait loci mapped in modern inbred lines, which suggests that historic bottlenecks have shaped regulation. Our results suggest that one path for further genetic improvement in agricultural species lies in purging the rare deleterious variants that have been associated with crop fitness.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas/genética , Aptidão Genética/genética , Zea mays/genética , Produtos Agrícolas/genética , Variação Genética/genética , Genoma de Planta/genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Densidade Demográfica , Locos de Características Quantitativas/genética , RNA de Plantas/genética , Sementes/genética , Análise de Sequência de RNA
3.
Science ; 325(5941): 714-8, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19661422

RESUMO

Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single large-effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.


Assuntos
Flores/genética , Locos de Características Quantitativas , Zea mays/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Epistasia Genética , Flores/crescimento & desenvolvimento , Frequência do Gene , Genes de Plantas , Variação Genética , Geografia , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Recombinação Genética , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...