Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2306763121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498711

RESUMO

Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Simportadores , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Ácido Láctico/metabolismo , Transporte Biológico , Simportadores/genética , Simportadores/metabolismo
2.
Nature ; 621(7980): 849-856, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730993

RESUMO

Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.


Assuntos
Linfócitos T CD8-Positivos , Ativação Linfocitária , Diferenciação Celular/genética , Ciclo do Ácido Cítrico , Fosforilação Oxidativa , Memória Imunológica/genética
3.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452600

RESUMO

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Assuntos
Células T de Memória , Transportadores de Ácidos Monocarboxílicos , Lactatos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
4.
Sci Rep ; 10(1): 21673, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303820

RESUMO

The AMP-activated kinase (AMPK) is a major energy sensor metabolic enzyme that is activated early during T cell immune responses but its role in the generation of effector T cells is still controversial. Using both in vitro and in vivo models of T cell proliferation, we show herein that AMPK is dispensable for early TCR signaling and short-term proliferation but required for sustained long-term T cell proliferation and effector/memory T cell survival. In particular, AMPK promoted accumulation of effector/memory T cells in competitive homeostatic proliferation settings. Transplantation of AMPK-deficient hematopoïetic cells into allogeneic host recipients led to a reduced graft-versus-host disease, further bolstering a role for AMPK in the expansion and pathogenicity of effector T cells. Mechanistically, AMPK expression enhances the mitochondrial membrane potential of T cells, limits reactive oxygen species (ROS) production, and resolves ROS-mediated toxicity. Moreover, dampening ROS production alleviates the proliferative defect of AMPK-deficient T cells, therefore indicating a role for an AMPK-mediated ROS control of T cell fitness.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/genética , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/toxicidade , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...