Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1332976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606076

RESUMO

Introduction: Aphanomyces euteiches Drechsler is an oomycete pathogen that affects legume crops, causing root rot, a severe disease of peas (Pisum sativum L.) worldwide. While significant research progress has been made in breeding pea-resistant varieties, there is still a need for a deeper understanding of the diversity of pathogen populations present in breeding nurseries located in various legume-growing regions around the world. Methods: We analysed the diversity of 51 pea-infecting isolates of A. euteiches, which were recovered from four American (Athena, OR; Le Sueur, MN; Mount Vernon, WA; Pullman, WA) and three French (Riec-sur-Belon, Templeux-le-Guérard, Dijon) resistance screening nurseries. Our study focused on evaluating their aggressiveness on two sets of differential hosts, comprising six pea lines and five Medicago truncatula accessions. Results: The isolates clustered into three groups based on their aggressiveness on the whole pea set, confirming the presence of pathotypes I and III. Pathotype I was exclusive to French isolates and American isolates from Athena and Pullman, while all isolates from Le Sueur belonged to pathotype III. Isolates from both pathotypes were found in Mount Vernon. The M. truncatula set clustered the isolates into three groups based on their aggressiveness on different genotypes within the set, revealing the presence of five pathotypes. All the isolates from the French nurseries shared the same Fr pathotype, showing higher aggressiveness on one particular genotype. In contrast, nearly all-American isolates were assigned to four other pathotypes (Us1, Us2, Us3, Us4), differing in their higher aggressiveness on two to five genotypes. Most of American isolates exhibited higher aggressiveness than French isolates within the M. truncatula set, but showed lower aggressiveness than French isolates within the P. sativum set. Discussion: These results provide valuable insights into A. euteiches pathotypes, against which the QTL and sources of resistance identified in these nurseries displayed effectiveness. They also suggest a greater adaptation of American isolates to alfalfa, a more widely cultivated host in the United States.

2.
Theor Appl Genet ; 137(2): 47, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334777

RESUMO

KEY MESSAGE: QTL mapping and recombinant screening confirmed the major effect of QTL Ae-Ps4.5 on pea resistance to pathotype III of Aphanomyces euteiches and fine-mapped the QTL to a 3.06-Mb interval. Aphanomyces root rot, caused by Aphanomyces euteiches, is the most important disease of pea (Pisum sativum L.) worldwide. The development of pea-resistant varieties is a major challenge to control the disease. Previous linkage studies identified seven main resistance quantitative trait loci (QTL), including the QTL Ae-Ps4.5 associated with partial resistance in US nurseries infested by the pea pathotype III of A. euteiches. This study aimed to confirm the major effect of Ae-Ps4.5 on A. euteiches pathotype III, refine its interval, and identify candidate genes underlying the QTL. QTL mapping on an updated genetic map from the Puget × 90-2079 pea recombinant inbred line population identified Ae-Ps4.5 in a 0.8-cM confidence interval with a high effect (R2 = 89%) for resistance to the Ae109 reference strain of A. euteiches (pathotype III) under controlled conditions. However, the QTL mapping did not detect Ae-Ps4.5 for resistance to the RB84 reference strain of A. euteiches (pathotype I). Screening 224-pea BC5F2 plant progeny derived from three near-isogenic lines (NILs) carrying the 90-2079 allele at Ae-Ps4.5 in the Puget genetic background with 26 SNP markers identified 15 NILs showing recombination in the QTL interval. Phenotyping of the recombinant lines for resistance to the Ae109 strain of A. euteiches reduced the QTL to a physical interval of 3.06 Mb, containing 50 putative annotated genes on the Caméor pea genome V1a among which three candidate genes highlighted. This study provides closely linked SNP markers and putative candidate genes to accelerate pea breeding for resistant varieties to Aphanomyces root rot.


Assuntos
Aphanomyces , Pisum sativum , Pisum sativum/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Locos de Características Quantitativas
3.
Front Plant Sci ; 14: 1189289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841625

RESUMO

Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...