Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Mach Intell ; 4(11): 953-963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415333

RESUMO

Image noise is a common problem in light microscopy. This is particularly true in real-time live-cell imaging applications in which long-term cell viability necessitates low-light conditions. Modern denoisers are typically trained on a representative dataset, sometimes consisting of just unpaired noisy shots. However, when data are acquired in real time to track dynamic cellular processes, it is not always practical nor economical to generate these training sets. Recently, denoisers have emerged that allow us to denoise single images without a training set or knowledge about the underlying noise. But such methods are currently too slow to be integrated into imaging pipelines that require rapid, real-time hardware feedback. Here we present Noise2Fast, which can overcome these limitations. Noise2Fast uses a novel downsampling technique we refer to as 'chequerboard downsampling'. This allows us to train on a discrete 4-image training set, while convergence can be monitored using the original noisy image. We show that Noise2Fast is faster than all similar methods with only a small drop in accuracy compared to the gold standard. We integrate Noise2Fast into real-time multi-modal imaging applications and demonstrate its broad applicability to diverse imaging and analysis pipelines.

2.
Nat Biotechnol ; 40(6): 885-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190686

RESUMO

High-throughput functional characterization of genetic variants in their endogenous locus has so far been possible only with methods that rely on homology-directed repair, which are limited by low editing efficiencies. Here, we adapted CRISPR prime editing for high-throughput variant classification and combined it with a strategy that allows for haploidization of any locus, which simplifies variant interpretation. We demonstrate the utility of saturation prime editing (SPE) by applying it to the NPC intracellular cholesterol transporter 1 gene (NPC1), mutations in which cause the lysosomal storage disorder Niemann-Pick disease type C. Our data suggest that NPC1 is very sensitive to genetic perturbation, with 410 of 706 assayed missense mutations being classified as deleterious, and that the derived function score of variants is reflective of diverse molecular defects. We further applied our approach to the BRCA2 gene, demonstrating that SPE is translatable to other genes with an appropriate cellular assay. In sum, we show that SPE allows for efficient, accurate functional characterization of genetic variants.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA