Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 24, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941456

RESUMO

BACKGROUND: It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS: Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS: Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Coffea/fisiologia , Luz , Lua , Coffea/genética , Fotossíntese/genética
2.
Nat Plants ; 1: 15015, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-27246882

RESUMO

In Arabidopsis the plasma membrane nitrate transceptor (transporter/receptor) NRT1.1 governs many physiological and developmental responses to nitrate. Alongside facilitating nitrate uptake, NRT1.1 regulates the expression levels of many nitrate assimilation pathway genes, modulates root system architecture, relieves seed dormancy and protects plants from ammonium toxicity. Here, we assess the functional and phenotypic consequences of point mutations in two key residues of NRT1.1 (P492 and T101). We show that the point mutations differentially affect several of the NRT1.1-dependent responses to nitrate, namely the repression of lateral root development at low nitrate concentrations, and the short-term upregulation of the nitrate-uptake gene NRT2.1, and its longer-term downregulation, at high nitrate concentrations. We also show that these mutations have differential effects on genome-wide gene expression. Our findings indicate that NRT1.1 activates four separate signalling mechanisms, which have independent structural bases in the protein. In particular, we present evidence to suggest that the phosphorylated and non-phosphorylated forms of NRT1.1 at T101 have distinct signalling functions, and that the nitrate-dependent regulation of root development depends on the phosphorylated form. Our findings add to the evidence that NRT1.1 is able to trigger independent signalling pathways in Arabidopsis in response to different environmental conditions.

3.
Philos Trans R Soc Lond B Biol Sci ; 367(1595): 1509-16, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22527393

RESUMO

Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Gravitropismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Floema/crescimento & desenvolvimento , Floema/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...