Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36838270

RESUMO

The excessive use of chemicals in intensive agriculture has had a negative impact on soil diversity and fertility. A strategy for developing sustainable agriculture could rely on the use of microbial-based fertilizers, known as biofertilizers. An alternative to marketed products could be offered to small farmers if they could produce their own biofertilizers using forest litters, which harbor one of the highest microbial diversities. The aim of this study is to characterize microbial communities of Fermented Forest Litters (FFL), assuming that the fermentation process will change both their abundance and diversity. We investigated two types of differing in the chemical composition of the initial litters used and the climatic context of the forest where they are originated from. The abundance and diversity of bacterial and fungal communities were assessed using quantitative PCR and molecular genotyping techniques. The litter chemical compositions were compared before and after fermentation using Infrared spectrometry. Results obtained showed that fermentation increased the abundance of bacteria but decreased that of fungi. Low pH and change in organic matter composition observed after fermentation also significantly reduced the α-diversity of both bacterial and fungal communities. The higher proportion of aliphatic molecules and lower C/N of the FFLs compared to initial litters indicate that FFLs should be rapidly decomposed once added into the soil. This preliminary study suggests that the agronomic interest of FFLs used as biofertilizers is probably more related to the contribution of nutrients easily assimilated by plants than to the diversity of microorganisms that compose it. Further studies must be conducted with sequencing techniques to identify precisely the microbial species likely to be beneficial to plant growth.

2.
Microb Ecol ; 86(2): 1447-1452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36409329

RESUMO

Methane (CH4) oxidation by methanotrophic bacteria in forest soils is the largest biological sink for this greenhouse gas on earth. However, the compaction of forest soils by logging traffic has previously been shown to reduce the potential rate of CH4 uptake. This change could be due to not only a decrease of methanotrophs but also an increase in methanogen activity. In this study, we investigated whether the decrease in CH4 uptake by forest soils, subjected to compaction by heavy machinery 7 years earlier, can be explained by quantitative and qualitative changes in methanogenic and methanotrophic communities. We measured the functional gene abundance and polymorphism of CH4 microbial oxidizers (pmoA) and producers (mcrA) at different depths and during different seasons. Our results revealed that the soil compaction effect on the abundance of both genes depended on season and soil depth, contrary to the effect on gene polymorphism. Bacterial pmoA abundance was significantly lower in the compacted soil than in the controls across all seasons, except in winter in the 0-10 cm depth interval and in summer in the 10-20 cm depth interval. In contrast, archaeal mcrA abundance was higher in compacted than control soil in winter and autumn in the two soil depths investigated. This study shows the usefulness of using pmoA and mcrA genes simultaneously in order to better understand the spatial and temporal variations of soil CH4 fluxes and the potential effect of physical disturbances.


Assuntos
Euryarchaeota , Solo , Estações do Ano , Bactérias/genética , Oxirredução , Florestas , Metano , Microbiologia do Solo
3.
Microorganisms ; 8(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796763

RESUMO

The introduction of a strain or consortium has often been considered as a potential solution to restore microbial ecosystems. Extensive research on the skin microbiota has led to the development of probiotic products (with live bacterial strains) that are likely to treat dysbiosis. However, the effects of such introductions on the indigenous microbiota have not yet been investigated. Here, through a daily application of Lactobacillus reuteri DSM 17938 on volunteers' forearm skin, we studied in vivo the impact of a probiotic on the indigenous skin bacterial community diversity using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) for 3 weeks. The results demonstrate that Lactobacillus reuteri DSM 17938 inoculum had a transient effect on the indigenous community, as the resilience phenomenon was observed within the skin microbiota. Moreover, Lactobacillus reuteri DSM 17938 monitoring showed that, despite a high level of detection after 2 weeks of application, thereafter the colonization rate drops drastically. The probiotic colonization rate was correlated significantly to the effect on the indigenous microbial community structure. These preliminary results suggest that the success of probiotic use and the potential health benefits resides in the interactions with the human microbiota.

4.
J Microbiol Methods ; 171: 105880, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32109500

RESUMO

The skin microbiota is characterized by high intra- and inter-variability among individuals, due to a multitude of intrinsic and extrinsic parameters such as genetics, lifestyles or pollution. This variability may be heightened due to sampling method as the skin is a multilayer organ and its outermost layer consists of dead cells. In order to investigate this biological variability in a reproducible way, we studied how sampling procedure and DNA extraction methods influence the qualitative and quantitative gathering of bacterial communities. Here, we tested a new sampling procedure that consists in exerting a slight abrasion (scrubbing) on the skin prior to swabbing and extracting DNA in order to remove squames and access deeper ecological niches. Scrubbed and non-scrubbed samples were collected from a panel of six volunteers, and four DNA extraction methods were performed on the samples. The abundance, diversity and structure of the bacterial communities were measured using qPCR technics and 16S rDNA gene-metabarcoding. Bacterial community abundance was significantly impacted by the DNA extraction method (in favor of a method designed for tissues) but not by sampling procedure, as scrubbing does not increase bacterial biomass gathered. Bacterial α- and ß-diversities were both affected by DNA extraction methods and sampling procedure. Scrubbing reveals different microbial composition by gathering bacteria living in deeper skin layer, resulting in a lower intra-personal variability. The taxonomic analysis showed that more bacteria belonging to anaerobes groups were present in scrubbed samples. We conclude that DNA extraction methods designed for tissue are not necessarily associated with high qualitative efficiency and slight scrubbing prior DNA extraction reduces intrapersonal variability and give access to a new microbial diversity.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Pele/microbiologia , Manejo de Espécimes/métodos , Adulto , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , Feminino , Humanos , RNA Ribossômico 16S/genética , Adulto Jovem
5.
Mycorrhiza ; 29(5): 475-487, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31506745

RESUMO

Arbuscular mycorrhizal fungi (AMF) play a central role in rhizosphere functioning as they interact with both plants and soil microbial communities. The conditions in which AMF modify plant physiology and microbial communities in the rhizosphere are still poorly understood. In the present study, four different plant species, (clover, alfalfa, ryegrass, tall fescue) were cultivated in either sterilized (γ ray) or non-sterilized soil and either inoculated with a commercial AMF (Glomus LPA Val 1.) or not. After 20 weeks of cultivation, the mycorrhizal rate and shoot and root biomasses were measured. The abundance and composition of bacteria, archaea, and fungi were analyzed, respectively, by quantitative PCR (qPCR) and fingerprinting techniques. Whilst sterilization did not change the AMF capacity to modify plant biomass, significant changes in microbial communities were observed, depending on the taxon and the associated plant. AMF inoculation decreases both bacterial and archaeal abundance and diversity, with a greatest extent in sterilized samples. These results also show that AMF exert different selections on soil microbial communities according to the plant species they are associated with. This study suggests that the initial abundance and diversity of rhizosphere microbial communities should be considered when introducing AMF to cultures.


Assuntos
Fabaceae/microbiologia , Microbiota/fisiologia , Micorrizas/fisiologia , Poaceae/microbiologia , Rizosfera , Glomeromycota/fisiologia , Microbiologia do Solo
6.
Front Microbiol ; 8: 904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588567

RESUMO

The development of bacterial biofilms in natural environments may alter important functions, such as pollutant bioremediation by modifying both the degraders' physiology and/or interactions within the matrix. The present study focuses on the influence of biofilm formation on the metabolism of a pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D), by Cupriavidus necator JMP134. Pure cultures were established in a liquid medium with 2,4-D as a sole carbon source with or without sand grains for 10 days. Bacterial numbers and 2,4-D concentrations in solution were followed by spectrophotometry, the respiration rate by gas chromatography and the surface colonization by electron microscopy. In addition, isotopic techniques coupled with Fatty Acid Methyl Ester (FAME) profiling were used to determine possible metabolic changes. After only 3 days, approximately 80% of the cells were attached to the sand grains and microscopy images showed that the porous medium was totally clogged by the development of a biofilm. After 10 days, there was 25% less 2,4-D in the solution in samples with sand than in control samples. This difference was due to (1) a higher (+8%) mineralization of 2,4-D by sessile bacteria and (2) a retention (15%) of 2,4-D in the biofilm matrix. Besides, the amount of carbohydrates, presumably constituting the biofilm polysaccharides, increased by 63%. Compound-specific isotope analysis revealed that the FAME isotopic signature was less affected by the biofilm lifestyle than was the FAME composition. These results suggest that sessile bacteria differ more in their anabolism than in their catabolism compared to their planktonic counterparts. This study stresses the importance of considering interactions between microorganisms and their habitat when studying pollutant dynamics in porous media.

7.
Sci Total Environ ; 598: 938-948, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468120

RESUMO

The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring.


Assuntos
Florestas , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Paris , Poaceae
8.
FEMS Microbiol Ecol ; 91(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26472576

RESUMO

Over the past decade, neutral theory has gained attention and recognition for its capacity to explain bacterial community structure (BCS) in addition to deterministic processes. However, no clear consensus has been drawn so far on their relative importance. In a metacommunity analysis, we explored at the regional and local scale the effects of these processes on the bacterial community assembly within the water column of 49 freshwater lakes. The BCS was assessed using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA genes. At the regional scales, results indicated that the neutral community model well predicted the spatial community structure (R(2) mean = 76%) compared with the deterministic factors - which explained only a small fraction of the BCS total variance (less than 14%). This suggests that the bacterial compartment was notably driven by stochastic processes, through loss and gain of taxa. At the local scale, the bacterial community appeared to be spatially structured by stochastic processes (R(2) mean = 65%) and temporally governed by the water temperature, a deterministic factor, even if some bacterial taxa were driven by neutral dynamics. Therefore, at both regional and local scales the neutral community model appeared to be relevant in explaining the bacterial assemblage structure.


Assuntos
Bactérias/classificação , Lagos/microbiologia , Modelos Biológicos , Carga Bacteriana , DNA Bacteriano/genética , França , Concentração de Íons de Hidrogênio , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
9.
Ecol Lett ; 18(10): 1040-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259498

RESUMO

Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could contribute to a theory of natural selection at several organisation levels. Here, we were not interested in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a specific structure of interaction network emerges under ecosystem artificial selection. We also investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 generations (n = 7560), we found a very high heritability of community phenotype (52%). Artificial selection was responsible for simpler interaction networks with lower interaction richness. Phenotype variance and heritability both decreased across generations, suggesting that selection was more likely limited by sampling effects than by stochastic ecosystem dynamics.


Assuntos
Bactérias/classificação , Evolução Biológica , Ecossistema , Seleção Genética , Dióxido de Carbono , Consórcios Microbianos , Modelos Genéticos , Fenótipo , Polimorfismo de Fragmento de Restrição , Processos Estocásticos
10.
Res Microbiol ; 166(10): 796-813, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26275598

RESUMO

The Arctic region is a unique environment, subject to extreme environmental conditions, shaping life therein and contributing to its sensitivity to environmental change. The Arctic is under increasing environmental pressure from anthropogenic activity and global warming. The unique microbial diversity of Arctic regions, that has a critical role in biogeochemical cycling and in the production of greenhouse gases, will be directly affected by and affect, global changes. This article reviews current knowledge and understanding of microbial taxonomic and functional diversity in Arctic soils, the contributions of microbial diversity to ecosystem processes and their responses to environmental change.


Assuntos
Biodiversidade , Microbiologia do Solo , Regiões Árticas , Carbono , Ecossistema , Gases , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Filogenia
11.
Ecol Evol ; 3(16): 5177-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24455147

RESUMO

Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models.

12.
Appl Environ Microbiol ; 77(20): 7296-306, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21856833

RESUMO

Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [(13)C]2,4-D, [(13)C]glucose, or mixtures of both substrates alternatively labeled with (13)C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the (13)C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Ácidos Graxos/análise , Glucose/metabolismo , Biotransformação , Isótopos de Carbono/metabolismo , Cupriavidus necator/crescimento & desenvolvimento , Microbiologia Ambiental , Marcação por Isótopo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...