Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Pharmacol ; 15: 1391412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698823

RESUMO

Background: Immediate early genes (IEGs) are rapidly activated and initiate diverse cellular processes including neuroplasticity. We report the effect of psilocybin (PSIL), PSIL-containing psychedelic mushroom extract (PME) and 5-hydroxytryptophan (5-HTP) on expression of the IEGs, cfos, egr1, and egr2 in mouse somatosensory cortex (SSC). Methods: In our initial experiment, male C57Bl/6j mice were injected with PSIL 4.4 mg/kg or 5-HTP 200 mg/kg, alone or immediately preceded by serotonergic receptor modulators. IEG mRNA expression 1 hour later was determined by real time qPCR. In a replication study a group of mice treated with PME was added. Results: In our initial experiment, PSIL but not 5-HTP significantly increased expression of all three IEGs. No correlation was observed between the head twitch response (HTR) induced by PSIL and its effect on the IEGs. The serotonergic receptor modulators did not significantly alter PSIL-induced IEG expression, with the exception of the 5-HT2C antagonist (RS102221), which significantly enhanced PSIL-induced egr2 expression. 5-HTP did not affect IEG expression. In our replication experiment, PSIL and PME upregulated levels of egr1 and cfos while the upregulation of egr2 was not significant. Conclusions: We have shown that PSIL and PME but not 5-HTP (at a dose sufficient to induce HTR), induced a significant increase in cfos and egr1 expression in mouse SSC. Our findings suggest that egr1 and cfos expression may be associated with psychedelic effects.

2.
Front Bioeng Biotechnol ; 12: 1333548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449674

RESUMO

The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms.

3.
Mol Psychiatry ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378926

RESUMO

Psilocybin, a naturally occurring, tryptamine alkaloid prodrug, is currently being investigated for the treatment of a range of psychiatric disorders. Preclinical reports suggest that the biological effects of psilocybin-containing mushroom extract or "full spectrum" (psychedelic) mushroom extract (PME), may differ from those of chemically synthesized psilocybin (PSIL). We compared the effects of PME to those of PSIL on the head twitch response (HTR), neuroplasticity-related synaptic proteins and frontal cortex metabolomic profiles in male C57Bl/6j mice. HTR measurement showed similar effects of PSIL and PME over 20 min. Brain specimens (frontal cortex, hippocampus, amygdala, striatum) were assayed for the synaptic proteins, GAP43, PSD95, synaptophysin and SV2A, using western blots. These proteins may serve as indicators of synaptic plasticity. Three days after treatment, there was minimal increase in synaptic proteins. After 11 days, PSIL and PME significantly increased GAP43 in the frontal cortex (p = 0.019; p = 0.039 respectively) and hippocampus (p = 0.015; p = 0.027) and synaptophysin in the hippocampus (p = 0.041; p = 0.05) and amygdala (p = 0.035; p = 0.004). PSIL increased SV2A in the amygdala (p = 0.036) and PME did so in the hippocampus (p = 0.014). In the striatum, synaptophysin was increased by PME only (p = 0.023). There were no significant effects of PSIL or PME on PSD95 in any brain area when these were analyzed separately. Nested analysis of variance (ANOVA) showed a significant increase in each of the 4 proteins over all brain areas for PME versus vehicle control, while significant PSIL effects were observed only in the hippocampus and amygdala and were limited to PSD95 and SV2A. Metabolomic analyses of the pre-frontal cortex were performed by untargeted polar metabolomics utilizing capillary electrophoresis - Fourier transform mass spectrometry (CE-FTMS) and showed a differential metabolic separation between PME and vehicle groups. The purines guanosine, hypoxanthine and inosine, associated with oxidative stress and energy production pathways, showed a progressive decline from VEH to PSIL to PME. In conclusion, our synaptic protein findings suggest that PME has a more potent and prolonged effect on synaptic plasticity than PSIL. Our metabolomics data support a gradient of effects from inert vehicle via chemical psilocybin to PME further supporting differential effects. Further studies are needed to confirm and extend these findings and to identify the molecules that may be responsible for the enhanced effects of PME as compared to psilocybin alone.

4.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146601

RESUMO

Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.

5.
Vaccine ; 39(48): 7044-7051, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34756612

RESUMO

rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86-97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
BioTech (Basel) ; 10(4)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822796

RESUMO

This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.

7.
BioTech (Basel) ; 10(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-35822799

RESUMO

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) increases the need for a rapid development of efficient vaccines. Among other vaccines in clinical trials, a recombinant VSV-∆G-spike vaccine was developed by the Israel Institute for Biological Research (IIBR) and is being evaluated. The development of an efficient downstream purification process (DSP) enables the vaccine to be advanced to clinical trials. The DSP must eliminate impurities, either process- or product-related, to yield a sufficient product with high purity, potency and quality. To acquire critical information on process restrictions and qualities, the application of in-line monitoring is vital and should significantly impact the process yield, product quality and economy of the entire process. Here, we describe an in-line monitoring technique that was applied in the DSP of the VSV-∆G-spike vaccine. The technique is based on determining the concentrations of metabolites, nutrients and a host cell protein using the automatic chemistry analyzer, Cobas Integra 400 Plus. The analysis revealed critical information on process parameters and significantly impacted purification processes. The technique is rapid, easy and efficient. Adopting this technique during the purification process improves the process yield and the product quality and enhances the economy of the entire downstream process for biotechnology and bio pharmaceutical products.

8.
Toxins (Basel) ; 12(6)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481526

RESUMO

Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab')2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antitoxinas/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Ricina/antagonistas & inibidores , Administração por Inalação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Cavalos , Injeções Intramusculares , Camundongos , Ricina/administração & dosagem , Ricina/imunologia , Ricina/intoxicação , Sus scrofa , Fatores de Tempo
10.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L255-L268, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382767

RESUMO

Irrespective of its diverse etiologies, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) leads to increased permeability of the alveolar-capillary barrier, which in turn promotes edema formation and respiratory failure. We investigated the mechanism of ALI/ARDS lung hyperpermeability triggered by pulmonary exposure of mice to the highly toxic plant-derived toxin ricin. One prominent hallmark of ricin-mediated pulmonary intoxication is the rapid and massive influx of neutrophils to the lungs, where they contribute to the developing inflammation yet may also cause tissue damage, thereby promoting ricin-mediated morbidity. Here we show that pulmonary exposure of mice to ricin results in the rapid diminution of the junction proteins VE-cadherin, claudin 5, and connexin 43, belonging, respectively, to the adherens, tight, and gap junction protein families. Depletion of neutrophils in ricin-intoxicated mice attenuated the damage caused to these junction proteins, alleviated pulmonary edema, and significantly postponed the time to death of the intoxicated mice. Inhibition of matrix metalloproteinase (MMP) activity recapitulated the response to neutrophil depletion observed in ricin-intoxicated mice and was associated with decreased insult to the junction proteins and alveolar-capillary barrier. However, neutrophil-mediated MMP activity was not the sole mechanism responsible for pulmonary hyperpermeability, as exemplified by the ricin-mediated disruption of claudin 18, via a neutrophil-independent mechanism involving tyrosine phosphorylation. This in-depth study of the early stage mechanisms governing pulmonary tissue integrity during ALI/ARDS is expected to facilitate the tailoring of novel therapeutic approaches for the treatment of these diseases.


Assuntos
Antígenos CD/metabolismo , Barreira Alveolocapilar/metabolismo , Caderinas/metabolismo , Claudina-5/metabolismo , Conexina 43/metabolismo , Junções Intercelulares/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Ricina/toxicidade , Animais , Barreira Alveolocapilar/patologia , Claudinas/metabolismo , Colagenases/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação , Junções Intercelulares/patologia , Camundongos , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
11.
Appl Environ Microbiol ; 82(14): 4070-4080, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27129968

RESUMO

UNLABELLED: Although Mn(2+) is the most abundant substrate of versatile peroxidases (VPs), repression of Pleurotus ostreatus vp1 expression occurred in Mn(2+)-sufficient medium. This seems to be a biological contradiction. The aim of this study was to explore the mechanism of direct oxidation by VP1 under Mn(2+)-deficient conditions, as it was found to be the predominant enzyme during fungal growth in the presence of synthetic and natural substrates. The native VP1 was purified and characterized using three substrates, Mn(2+), Orange II (OII), and Reactive Black 5 (RB5), each oxidized by a different active site in the enzyme. While the pH optimum for Mn(2+) oxidation is 5, the optimum pH for direct oxidation of both dyes was found to be 3. Indeed, effective in vivo decolorization occurred in media without addition of Mn(2+) only under acidic conditions. We have determined that Mn(2+) inhibits in vitro the direct oxidation of both OII and RB5 while RB5 stabilizes both Mn(2+) and OII oxidation. Furthermore, OII was found to inhibit the oxidation of both Mn(2+) and RB5. In addition, we could demonstrate that VP1 can cleave OII in two different modes. Under Mn(2+)-mediated oxidation conditions, VP1 was able to cleave the azo bond only in asymmetric mode, while under the optimum conditions for direct oxidation (absence of Mn(2+) at pH 3) both symmetric and asymmetric cleavages occurred. We concluded that the oxidation mechanism of aromatic compounds by VP1 is controlled by Mn(2+) and pH levels both in the growth medium and in the reaction mixture. IMPORTANCE: VP1 is a member of the ligninolytic heme peroxidase gene family of the white rot fungus Pleurotus ostreatus and plays a fundamental role in biodegradation. This enzyme exhibits a versatile nature, as it can oxidize different substrates under altered environmental conditions. VPs are highly interesting enzymes due to the fact that they contain unique active sites that are responsible for direct oxidation of various aromatic compounds, including lignin, in addition to the well-known Mn(2+) binding active site. This study demonstrates the limits of versatility of P. ostreatus VP1, which harbors multiple active sites, exhibiting a broad range of enzymatic activities, but they perform differently under distinct conditions. The versatility of P. ostreatus and its enzymes is an advantageous factor in the fungal ability to adapt to changing environments. This trait expands the possibilities for the potential utilization of P. ostreatus and other white rot fungi.


Assuntos
Manganês/metabolismo , Peroxidase/metabolismo , Pleurotus/enzimologia , Compostos Azo/metabolismo , Benzenossulfonatos/metabolismo , Concentração de Íons de Hidrogênio , Naftalenossulfonatos/metabolismo , Oxirredução , Peroxidase/isolamento & purificação
12.
Int J Neuropsychopharmacol ; 15(6): 727-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21791160

RESUMO

Emerging evidence suggests impaired one-carbon metabolism in schizophrenia. Homocysteine is one of the key components of one-carbon metabolism. Elevated plasma homocysteine levels were reported in schizophrenia. A linkage study found that nicotinamide-N-methyltransferase (NNMT), an enzyme involved in one-carbon metabolism, is a determinant of plasma homocysteine levels. In an association study the rs694539 NNMT single nucleotide polymorphism (SNP) was found significantly associated with hyperhomocysteinaemia. Aiming to assess the possible involvement of NNMT in the aetiology of schizophrenia we (1) performed an association study of eight NNMT tagged SNPs in 202 families sharing the same ethnic origin including healthy parents and a schizophrenia proband; (2) assessed NNMT mRNA levels in post-mortem frontal cortex of schizophrenia patients. Genotyping was performed using the ABI SNaPshot and the HRM methods. Individual SNPs and haplotypes were analysed for association using the family-based association test (UNPHASED software). NNMT mRNA levels were measured using RT real-time PCR. In the single SNP analysis, rs694539, previously reported to be associated with hyperhomocysteinaemia, and rs1941404 were significantly associated with schizophrenia (p<0.004 and p=0.033, respectively, following permutation test adjustment). Several haplotypes were also significantly associated with schizophrenia (global p values <0.05 following permutation test adjustment). This is the first study demonstrating an association of NNMT with schizophrenia. Post-mortem frontal cortex NNMT mRNA levels were ~35% lower in schizophrenia patients vs. control subjects. Our study favours the notion that NNMT is involved in the aetiology of schizophrenia.


Assuntos
Lobo Frontal/metabolismo , Nicotinamida N-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Nicotinamida N-Metiltransferase/metabolismo , Adulto Jovem
13.
Hum Mol Genet ; 20(18): 3632-41, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21680558

RESUMO

Recent work has led to the identification of several susceptibility genes for autism spectrum disorder (ASD) and an increased appreciation of the importance of rare and de novo mutations. Some of the mutations may be very hard to detect using current strategies, especially if they are located in regulatory regions. We present a new approach to identify functional mutations that exploit the fact that many rare mutations disrupt the expression of genes from a single parental chromosome. The method incorporates measurement of the relative expression of the two copies of a gene across the genome using single nucleotide polymorphism arrays. Allelic expression has been successfully used to study common regulatory polymorphisms; however, it has not been implemented as a screening tool for rare mutation. We tested the potential of this approach by screening for monoallelic expression in lymphoblastoid cell lines derived from a small ASD cohort. After filtering regions shared across multiple samples, we identified genes showing monoallelic expression in specific ASD samples. Validation by quantitative sequencing demonstrated that the genes (or only part of them) are monoallelic expressed. The genes included both previously suspected risk factors for ASD and novel candidates. In one gene, named autism susceptibility candidate 2 (AUTS2), we identified a rare duplication that is likely to be the cause of monoallelic expression. Our results demonstrate the ability to identify rare regulatory mutations using genome-wide allelic expression screens, capabilities that could be expanded to other diseases, especially those with suspected involvement of rare dominantly acting mutations.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Estudo de Associação Genômica Ampla/métodos , Mutação , Polimorfismo de Nucleotídeo Único , Criança , Estudos de Coortes , Feminino , Variação Genética , Genoma Humano , Humanos , Masculino
14.
Mol Med ; 17(7-8): 799-806, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21528155

RESUMO

Deficits in social behavior in mice lacking the CD38 gene have been attributed to impaired secretion of oxytocin. In humans, similar deficits in social behavior are associated with autistic spectrum disorder (ASD), for which genetic variants of CD38 have been pinpointed as provisional risk factors. We sought to explore, in an in vitro model, the feasibility of the theory that restoring the level of CD38 in ASD patients could be of potential clinical benefit. CD38 transcription is highly sensitive to several cytokines and vitamins. One of these, all-trans retinoic acid (ATRA), a known inducer of CD38, was added during cell culture and tested on a large sample of N = 120 lymphoblastoid cell (LBC) lines from ASD patients and their parents. Analysis of CD38 mRNA levels shows that ATRA has an upmodulatory potential on LBC derived from ASD patients as well as from their parents. The next crucial issue addressed in our study was the relationship between levels of CD38 expression and psychological parameters. The results obtained indicate a positive correlation between CD38 expression levels and patient scores on the Vineland Adaptive Behavior Scale. In addition, analysis of the role of genetic polymorphisms in the dynamics of the molecule revealed that the genotype of a single-nucleotide polymorphism (rs6449182; C>G variation) in the CpG island of intron 1, harboring the retinoic-acid response element, exerts differential roles in CD38 expression in ASD and in parental LBC. In conclusion, our results provide an empirical basis for the development of a pharmacological ASD treatment strategy based on retinoids.


Assuntos
ADP-Ribosil Ciclase 1/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Linfócitos/efeitos dos fármacos , Tretinoína/farmacologia , Adolescente , Adulto , Linhagem Celular , Criança , Transtornos Globais do Desenvolvimento Infantil/patologia , Transtornos Globais do Desenvolvimento Infantil/psicologia , Pré-Escolar , Ilhas de CpG/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Inteligência/genética , Íntrons/genética , Linfócitos/citologia , Linfócitos/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
16.
Autism Res ; 3(6): 293-302, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21182206

RESUMO

BACKGROUND: Impairments in social processes characterize one of the core deficits in autism spectrum disorders (ASD) and accumulating evidence suggests that oxytocin neurotransmission is implicated in mediating social adaptation in ASD. Using a mouse model, CD38, a transmembrane protein expressed in immune cells but also in brain, was found to be critical for social behavior via regulation of oxytocin secretion. This prompted us to both examine CD38 expression in human lymphoblastoid cell lines (LBC) as well as to test association between SNPs across the CD38 gene and ASD. METHODS: LBC's were derived from 44 ASD lines and 40 "unaffected" parents. Family-based association (UNPHASED) was examined by genotyping 11 tagging SNPs spanning the CD38 gene identified using HapMap data in 170 trios. An additional SNP (rs3796863) associated in a study by Munesue et al. with ASD was also genotyped. RESULTS: A highly significant reduction in CD38 expression was observed in immortalized lymphocytes derived from ASD subjects compared to their "unaffected" parents (F517.2, P50.00024, df51). Haplotype analysis showed significant association (permutation corrected) between three and seven locus haplotypes and DSM IV ASD in low functioning (IQ < 70) subjects. CONCLUSIONS: The current report supports a role for CD38 in conferring risk for ASD. Notably, our study shows that this gene is not only associated with low functioning ASD but that CD38 expression is markedly reduced in LBC derived from ASD subjects compared to "unaffected" parents, strengthening the connection between oxytocin and ASD.


Assuntos
ADP-Ribosil Ciclase 1/genética , Transtorno Autístico/genética , Haplótipos/genética , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , ADP-Ribosil Ciclase 1/sangue , Adolescente , Adulto , Análise de Variância , Transtorno Autístico/sangue , Técnicas de Cultura de Células , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Humanos , Israel , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adulto Jovem
17.
Ann N Y Acad Sci ; 1167: 87-102, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19580556

RESUMO

Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.


Assuntos
Arginina Vasopressina/fisiologia , Ocitocina/fisiologia , Comportamento Social , Humanos
18.
PLoS One ; 4(5): e5535, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19461999

RESUMO

BACKGROUND: Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. METHODOLOGY/PRINCIPAL FINDINGS: Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2-5 locus haplotypes (p<0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher's exact test). CONCLUSIONS: The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences.


Assuntos
Jogos Experimentais , Receptores de Ocitocina/genética , Comportamento Social , Valores Sociais , Análise e Desempenho de Tarefas , Adulto , Alocação de Custos , Feminino , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Software
19.
Psychoneuroendocrinology ; 34(3): 382-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18990498

RESUMO

BACKGROUND: A key protein in maintaining neuronal integrity throughout the life span is brain-derived neurotrophic factor (BDNF). The BDNF gene is characterized by a functional polymorphism, which has been associated with stress-related disorders such as anxiety-related syndromes and depression, prompting us to examine individual responses by Genotype and Sex to a standardized social stress paradigm. Gender differences in BDNFxstress responses were posited because estrogen induces synthesis of BDNF in several brain regions. METHODS: 97 university students (51 females and 46 males) participated in a social stress procedure (Trier Social Stress Test, TSST). Indices of stress were derived from repeated measurement of cortisol, blood pressure, and heart rate during the TSST. All subjects were genotyped for the Val66Met polymorphism. RESULTS: Tests of within-subject effects showed a significant three-way interaction (SPSS GLM repeated measures: Time (eight levels)xBDNF (val/val, val/met)xSex: p=0.0002), which reflects gender differences in the pattern of cortisol rise and decline during the social challenge. In male subjects, val/val homozygotes showed a greater rise in salivary cortisol than val/met heterozygotes. In female subjects, there was a trend for the opposite response, which is significant when area under the curve increase (AUCi) was calculated for the val/val homozygotes to show the lowest rise. Overall, the same pattern of results was observed for blood pressure and heart rate. CONCLUSIONS: These results indicate that a common, functionally significant polymorphism in the BDNF gene modulates HPA axis reactivity and regulation during the TSST differently in men and women. Findings may be related to gender differences in reactivity and vulnerability to social stress.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Genótipo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Polimorfismo Genético , Caracteres Sexuais , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Adulto , Pressão Sanguínea , Feminino , Frequência Cardíaca , Humanos , Hidrocortisona/metabolismo , Masculino , Saliva/metabolismo
20.
Biol Psychiatry ; 65(11): 985-91, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19058785

RESUMO

BACKGROUND: The sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) is a major plasma membrane transporter for sodium and potassium. We recently suggested that bipolar disorders (BD) may be associated with alterations in brain Na+, K+-ATPase. We further conjectured that the differences in Na+, K+-ATPase in BD patients could result partially from genetic variations in Na+, K+-ATPase alpha isoforms. METHODS: To test our hypothesis, we undertook a comprehensive study of 13 tagged single nucleotide polymorphisms (SNPs) across the three genes of the brain alpha isoforms of Na+, K+- ATPase (ATP1A1, ATP1A2, and ATP1A3, which encode the three alpha isoforms, alpha1, alpha2, and alpha3, respectively) identified using HapMap data and the Haploview algorithm. Altogether, 126 subjects diagnosed with BD from 118 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED and PBAT set of programs. RESULTS: Significant nominal association with BD was observed for six single SNPs (alpha1: rs11805078; alpha2: rs2070704, rs1016732, rs2854248, and rs2295623; alpha3: rs919390) in the three genes of Na+, K+-ATPase alpha isoforms. Haplotype analysis of the alpha2 isoform (ATP1A2 gene) showed a significant association with two loci haplotypes with BD (rs2295623: rs2070704; global p value = .0198, following a permutation test). CONCLUSIONS: This study demonstrates for the first time that genetic variations in Na+, K+-ATPase are associated with BD, suggesting a role of this enzyme in the etiology of this disease.


Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Análise Mutacional de DNA , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , ATPase Trocadora de Sódio-Potássio/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...