Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(6-1): 064209, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854500

RESUMO

By employing Husimi quasiprobability distributions, we show that a bounded portion of an unbounded phase space induces a finite effective dimension in an infinite-dimensional Hilbert space. We compare our general expressions with numerical results for the spin-boson Dicke model in the chaotic energy regime, restricting its unbounded four-dimensional phase space to a classically chaotic energy shell. This effective dimension can be employed to characterize quantum phenomena in infinite-dimensional systems, such as localization and scarring.

2.
Entropy (Basel) ; 25(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36673156

RESUMO

We present a detailed analysis of the connection between chaos and the onset of thermalization in the spin-boson Dicke model. This system has a well-defined classical limit with two degrees of freedom, and it presents both regular and chaotic regions. Our studies of the eigenstate expectation values and the distributions of the off-diagonal elements of the number of photons and the number of excited atoms validate the diagonal and off-diagonal eigenstate thermalization hypothesis (ETH) in the chaotic region, thus ensuring thermalization. The validity of the ETH reflects the chaotic structure of the eigenstates, which we corroborate using the von Neumann entanglement entropy and the Shannon entropy. Our results for the Shannon entropy also make evident the advantages of the so-called "efficient basis" over the widespread employed Fock basis when investigating the unbounded spectrum of the Dicke model. The efficient basis gives us access to a larger number of converged states than what can be reached with the Fock basis.

3.
Nat Commun ; 12(1): 852, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558492

RESUMO

In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time, filling it uniformly. Using Born's rules to connect quantum states with probabilities, one might then expect that all quantum states in the chaotic regime should be uniformly distributed in phase space. This simplified picture was shaken by the discovery of quantum scarring, where some eigenstates are concentrated along unstable periodic orbits. Despite that, it is widely accepted that most eigenstates of chaotic models are indeed ergodic. Our results show instead that all eigenstates of the chaotic Dicke model are actually scarred. They also show that even the most random states of this interacting atom-photon system never occupy more than half of the available phase space. Quantum ergodicity is achievable only as an ensemble property, after temporal averages are performed.

4.
J R Soc Interface ; 17(172): 20200567, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171071

RESUMO

Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).


Assuntos
Evolução Biológica , Fotossíntese , Genótipo , Fenótipo , Fotossíntese/genética
5.
Phys Rev E ; 102(3-1): 032208, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075874

RESUMO

We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant subspaces and degenerate energy levels. The standard procedure to reveal signatures of quantum chaos requires classifying the energy levels according to their symmetries, which may be experimentally and theoretically challenging. We show that this classification is not necessary to observe manifestations of spectral correlations in the temporal evolution of the survival probability, which makes this quantity a powerful tool in the identification of chaotic many-body quantum systems.

6.
Phys Rev E ; 101(1-1): 010202, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069677

RESUMO

Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.

7.
Phys Rev Lett ; 122(2): 024101, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720302

RESUMO

The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This quantum-classical correspondence has been corroborated for the kicked rotor and the stadium billiard, which are one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...