Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
ACS Appl Bio Mater ; 6(7): 2875-2885, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37339251

RESUMO

Catechol (cat) is a highly adhesive diphenol that can be chemically grafted to polymers such as chitosan (CH) to make them adhesive as well. However, catechol-containing materials experimentally show a large variability of toxicity, especially in vitro. While it is unclear how this toxicity emerges, most concerns are directed toward the oxidation of catechol into quinone that releases reactive oxygen species (ROS) which can, in turn, cause cell apoptosis through oxidative stress. To better understand the mechanisms at play, we examined the leaching profiles, hydrogen peroxide (H2O2) production, and in vitro cytotoxicity of several cat-chitosan (cat-CH) hydrogels that were prepared with different oxidation levels and cross-linking methods. To create cat-CH with different propensities toward oxidation, we grafted either hydrocaffeic acid (HCA, more prone to oxidation) or dihydrobenzoic acid (DHBA, less prone to oxidation) to the backbone of CH. Hydrogels were cross-linked either covalently, using sodium periodate (NaIO4) to trigger oxidative cross-linking, or physically, using sodium bicarbonate (SHC). While using NaIO4 as a cross-linker increased the oxidation levels of the hydrogels, it also significantly reduced in vitro cytotoxicity, H2O2 production, and catechol and quinone leaching in the media. For all gels tested, cytotoxicity could be directly related to the release of quinones rather than H2O2 production or catechol release, showing that oxidative stress may not be the main reason for catechol cytotoxicity, as other pathways of quinone toxicity come into play. Results also suggest that the indirect cytotoxicity of cat-CH hydrogels fabricated through carbodiimide chemistry can be reduced if (i) catechol groups are chemically bound to the polymer backbone to prevent leaching or (ii) the chosen cat-bearing molecule has a high resistance to oxidation. Coupled with the use of other cross-linking chemistries or more efficient purification methods, these strategies can be adopted to synthesize various types of cytocompatible cat-containing scaffolds.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/química , Peróxido de Hidrogênio , Encapsulamento de Células , Polímeros/química , Catecóis/química
2.
Biomater Sci ; 11(10): 3561-3573, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37000484

RESUMO

Adoptive cell therapy (ACT) shows success against treatment-resistant cancers, but is limited by the large number of intravenously delivered T cells required and toxicity related to systemic administration. In this work, we hypothesized that localized T cell delivery in an in situ gelling chitosan hydrogel will allow similar treatment efficacy despite delivering fewer cells than systemic intravenous delivery. A rapidly gelling chitosan gel with good mechanical properties was used for this study. Gel biocompatibility and biodegradability were tested over 8 weeks in mice. No adverse effects were observed. The gel elicited a local granulomatous reaction (foreign body reaction), degrading by about 75% volume at 8 weeks. The survival, escape and bioactivity against the tumour cells of encapsulated murine lymphocytes (OT-I) and human Jurkat cells were confirmed in vitro by live/dead assay and flow cytometry. Efficacy was studied using a mouse tumour model where the injected OT-I can specifically recognize and attack ovalbumin (OVA) protein-expressing tumours. The OT-I cell delivery scaffold was compared to untreated controls, OT-I in saline and intravenous systemic treatment with 3-fold more OT-I, observing tumour growth and localization by intravital microscopy and histology. Gel-encapsulated OT-I limited tumour growth significantly up to 11 days after treatment compared to that of untreated mice and mice with longer PBS-suspended OT-I treatment (9 days), but slightly less than that of mice with IV-delivered OT-I treatment (14 days). No significant difference was observed when directly comparing the gel and IV treatments. Although further optimization of the treatment is required, this work shows the feasibility and potential of the chitosan gel for localised OT-I delivery in cancer immunotherapy.


Assuntos
Quitosana , Neoplasias , Animais , Camundongos , Humanos , Linfócitos T , Imunoterapia , Modelos Animais de Doenças , Hidrogéis , Camundongos Endogâmicos C57BL
3.
J Biomed Mater Res A ; 111(7): 1031-1043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36597835

RESUMO

The rising incidence of bone disorders has resulted in the need for minimally invasive therapies to meet this demand. Injectable bioactive filler, alone or with cells, could be applied in a minimally invasive manner to fulfill irregular cavities in non-load bearing sites, which do not require high mechanical properties. Thermosensitive chitosan hydrogels that transition from a liquid to a mechanically stable solid at body temperature provide interesting features as in-situ injectable cytocompatible biomaterials, but they are not osteoconductive. Osteoconductivity can be applied in combination with bioactive ceramics e.g., 45S5-Bioglass® (BG). However, BG addition in chitosan hydrogels results in pH elevation, due to rapid ions release, which adversely affects gel formation, mechanical properties, and cytocompatibility. To address this, we created hybrid hydrogels, where BG is concentrated in chitosan-based microbeads, incorporated in in-situ gelling chitosan hydrogels. We then compared the hybrid hydrogels' properties to chitosan hydrogels with homogenously distributed BG. By varying the stirred emulsification process, BG percentage, and CH formulation, we could tune the microbeads' properties. Incorporation of BG microbeads drastically improved the hydrogel's compressive modulus in comparison to homogeneously distributed BG. It also strongly increased the survival and metabolic activities of encapsulated cells. Calcium/phosphate increase on BG microbeads suggests hydroxyapatite formation. The small diameter of microbeads allows minimally invasive injection through small needles. The feasibility of freezing and thawing microbeads provides the possibility of long-term storage for potential clinical applications. These data indicate that this hybrid hydrogel forms a promising injectable cell-laden bioactive biomaterial for the treatment of unloaded bone defects.


Assuntos
Quitosana , Quitosana/química , Microesferas , Materiais Biocompatíveis/química , Hidrogéis/química , Regeneração Óssea , Vidro/química
4.
APL Bioeng ; 6(4): 041502, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561511

RESUMO

Cancer immunotherapies have revolutionized the treatment of numerous cancers, with exciting results often superior to conventional treatments, such as surgery and chemotherapy. Despite this success, limitations such as limited treatment persistence and toxic side effects remain to be addressed to further improve treatment efficacy. Biomaterials offer numerous advantages in the concentration, localization and controlled release of drugs, cancer antigens, and immune cells in order to improve the efficacy of these immunotherapies. This review summarizes and highlights the most recent advances in the use of biomaterials for immunotherapies including drug delivery and cancer vaccines, with a particular focus on biomaterials for immune cell delivery.

5.
J Surg Res ; 279: 491-504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842974

RESUMO

INTRODUCTION: There is a growing need for small-diameter (<6 mm) off-the-shelf synthetic vascular conduits for different surgical bypass procedures, with actual synthetic conduits showing unacceptable thrombosis rates. The goal of this study was to build vascular grafts with better compliance than standard synthetic conduits and with an inner layer stimulating endothelialization while remaining antithrombogenic. METHODS: Tubular vascular conduits made of a scaffold of polyurethane/polycaprolactone combined with a bioactive coating based on chondroitin sulfate (CS) were created using electrospinning and plasma polymerization. In vitro testing followed by a comparative in vivo trial in a sheep model as bilateral carotid bypasses was performed to assess the conduits' performance compared to the actual standard. RESULTS: In vitro, the novel small-diameter (5 mm) electrospun vascular grafts coated with chondroitin sulfate (CS) showed 10 times more compliance compared to commercial expanded polytetrafluoroethylene (ePTFE) conduits while maintaining adequate suturability, burst pressure profiles, and structural stability over time. The subsequent in vivo trial was terminated after electrospun vascular grafts coated with CS showed to be inferior compared to their expanded polytetrafluoroethylene counterparts. CONCLUSIONS: The inability of the experimental conduits to perform well in vivo despite promising in vitro results may be related to the low porosity of the grafts and the lack of rapid endothelialization despite the presence of the CS coating. Further research is warranted to explore ways to improve electrospun polyurethane/polycaprolactone scaffold in order to make it prone to transmural endothelialization while being resistant to strenuous conditions.


Assuntos
Poliuretanos , Enxerto Vascular , Animais , Prótese Vascular , Sulfatos de Condroitina , Politetrafluoretileno/química , Ovinos
6.
J Vasc Interv Radiol ; 33(5): 495-504.e3, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150836

RESUMO

PURPOSE: To compare the mechanical properties of aneurysm content after endoleak embolization with a chitosan hydrogel (CH) with that with a chitosan hydrogel with sodium tetradecyl sulfate (CH-STS) using strain ultrasound elastography (SUE). MATERIALS AND METHODS: Bilateral common iliac artery type Ia endoleaks were created in 9 dogs. Per animal, 1 endoleak was randomized to blinded embolization with CH, and the other, with CH-STS. Brightness-mode ultrasound, Doppler ultrasound, SUE radiofrequency ultrasound, and computed tomography were performed for up to 6 months until sacrifice. Radiologic and histopathologic studies were coregistered to identify 3 regions of interest: the embolic agent, intraluminal thrombus (ILT), and aneurysm sac. SUE segmentations were performed by 2 blinded independent observers. The maximum axial strain (MAS) was the primary outcome. Statistical analysis was performed using the Fisher exact test, multivariable linear mixed-effects models, and intraclass correlation coefficients (ICCs). RESULTS: Residual endoleaks were identified in 7 of 9 (78%) and 4 of 9 (44%) aneurysms embolized with CH and CH-STS, respectively (P = .3348). CH-STS had a 66% lower MAS (P < .001) than CH. The ILT had a 37% lower MAS (P = .01) than CH and a 77% greater MAS (P = .079) than CH-STS. There was no significant difference in ILT between treatments. The aneurysm sacs embolized with CH-STS had a 29% lower MAS (P < .001) than those embolized with CH. Residual endoleak was associated with a 53% greater MAS (P < .001). The ICC for MAS was 0.807 (95% confidence interval: 0.754-0.849) between segmentations. CONCLUSIONS: CH-STS confers stiffer intraluminal properties to embolized aneurysms. Persistent endoleaks are associated with increased sac strain, an observation that may help guide management.


Assuntos
Embolização Terapêutica , Endoleak , Animais , Quitosana , Cães , Técnicas de Imagem por Elasticidade , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Endoleak/diagnóstico por imagem , Endoleak/terapia , Hidrogéis , Estudos Retrospectivos , Tetradecilsulfato de Sódio , Trombose/terapia , Resultado do Tratamento
7.
J Mater Chem B ; 9(40): 8406-8416, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34676861

RESUMO

Injectable hydrogels designed for cell therapy need to be adhesive to the surrounding tissues to maximize their retention and the communication between the host and the encapsulated cells. Catechol grafting is an efficient and well-known strategy to improve the adhesive properties of various polymers, including chitosan. However, catechol groups are also known to be cytotoxic as they oxidize into quinones in alkaline environments. Usually, hydrogels made from catechol-grafted chitosan (cat-CH) oxidize quickly, which tends to limit adhesion and prevent cell encapsulation. In this work, we limited oxidation and improved the cytocompatibility of cat-CH hydrogels by grafting chitosan with dihydroxybenzoic acid (DHBA), a small cat-bearing molecule known to have a high resistance to oxidation. We show that DHBA-grafted CH (dhba-CH) oxidized significantly slower and to a lesser extent that cat-CH made with hydrocaffeic acid (hca-CH). By combining dhba-CH with sodium bicarbonate and phosphate buffer, we fabricated thermosensitive injectable hydrogels with higher mechanical properties, quicker gelation and significantly lower oxidation than previously designed cat-CH systems. The resulting gels are highly adhesive on inorganic substrates and support L929 fibroblast encapsulation with high viability (≥90% after 24 hours), something that was not possible in any previously designed cat-CH gel system. These properties make the dhba-CH hydrogels excellent candidates for minimally invasive and targeted cell therapy in applications that require high adhesive strength.


Assuntos
Adesivos/química , Catecóis/química , Terapia Baseada em Transplante de Células e Tecidos/métodos , Quitosana/química , Fibroblastos/fisiologia , Hidrogéis/administração & dosagem , Adesivos/toxicidade , Animais , Materiais Biocompatíveis , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Camundongos , Muco , Oxirredução
8.
Stem Cells Int ; 2021: 6663467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367293

RESUMO

The efficacy of cell therapy is limited by low retention and survival of transplanted cells in the target tissues. In this work, we hypothesize that pharmacological preconditioning with celastrol, a natural potent antioxidant, could improve the viability and functions of mesenchymal stromal cells (MSC) encapsulated within an injectable scaffold. Bone marrow MSCs from rat (rMSC) and human (hMSC) origin were preconditioned for 1 hour with celastrol 1 µM or vehicle (DMSO 0.1% v/v), then encapsulated within a chitosan-based thermosensitive hydrogel. Cell viability was compared by alamarBlue and live/dead assay. Paracrine function was studied first by quantifying the proangiogenic growth factors released, followed by assessing scratched HUVEC culture wound closure velocity and proliferation of HUVEC when cocultured with encapsulated hMSC. In vivo, the proangiogenic activity was studied by evaluating the neovessel density around the subcutaneously injected hydrogel after one week in rats. Preconditioning strongly enhanced the viability of rMSC and hMSC compared to vehicle-treated cells, with 90% and 75% survival versus 36% and 58% survival, respectively, after 7 days in complete media and 80% versus 64% survival for hMSC after 4 days in low serum media (p < 0.05). Celastrol-treated cells increased quantities of proangiogenic cytokines compared to vehicle-pretreated cells, with a significant 3.0-fold and 1.8-fold increase of VEGFa and SDF-1α, respectively (p < 0.05). The enhanced paracrine function of preconditioned MSC was demonstrated by accelerated growth and wound closure velocity of injured HUVEC monolayer (p < 0.05) in vitro. Moreover, celastrol-treated cells, but not vehicle-treated cells, led to a significant increase of neovessel density in the peri-implant region after one week in vivo compared to the control (blank hydrogel). These results suggest that combining cell pretreatment with celastrol and encapsulation in hydrogel could potentiate MSC therapy for many diseases, benefiting particularly ischemic diseases.

9.
Mater Sci Eng C Mater Biol Appl ; 118: 111529, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255082

RESUMO

Fast-gelling chitosan thermosensitive hydrogels have proven to be excellent matrices for targeted drug-delivery and cell therapy. In this work, we demonstrate the possibility of designing injectable bioadhesive hydrogels with a high gelation rate by modifying chitosan with catechol (cat-CH) and using sodium bicarbonate (SHC) as a gelling agent. Cat-CH/SHC hydrogels gel under 5 min at 37 °C and reach a high secant modulus after 24 h (E = 90 kPa at 50% strain). Besides, they show significantly higher adhesion to tissues than chitosan hydrogels thanks to the combination of catechol grafting and physical crosslinking. Their pH and osmolality stayed inside the physiological range. While biocompability tests will be mandatory to conclude regarding their potential for drug or cell encapsulation, these hydrogels uniquely combine physiological compatibility, injectability, fast gelation, good cohesion, and bioadhesion.


Assuntos
Quitosana , Hidrogéis , Catecóis , Sistemas de Liberação de Medicamentos , Bicarbonato de Sódio
10.
Biomed Mater ; 16(1): 015003, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33245047

RESUMO

For extrusion-based bioprinting, the inks must be printable and rapidly present sufficient mechanical properties to support additional layers and provide a cohesive, manipulable structure. Thermosensitive hydrogels may be interesting candidates. However, the use of these materials is particularly challenging, since their rheological properties evolve with time and temperature. In this work, a rheological approach to characterize the printability of chitosan-based thermosensitive inks was developed. The method consists of evaluating: (1) the gelation kinetic at room temperature and at 37 °C; (2) shear-thinning behavior to estimate the shear rate applied during printing as a function of printing parameters; and (3) the viscosity after shear removal (recovery test) to simulate behaviour after biomaterial deposition. Hydrogels containing 2 and 3% w v-1 chitosan, combined with different gelling agents (sodium hydrogen carbonate (SHC), phosphate buffer, beta-glycerophosphate (BGP)) were tested, and compared with alginate/gelatin bioink as controls. To correlate the rheological studies with real printing conditions, a 3D-Discovery bioprinter was used to print hydrogels and the visual aspect of the printed structure was observed. Unconfined compressive tests were carried out to study the impact of applied shear rate during printing on the mechanical properties of printed structures. All pre-hydrogel solutions presented shear-thinning properties. The recovery of viscosity was found to depend on the hydrogel formulation, as well as the level of shear rate and the state of gelation at the time of printing. Formulations made with SHC and phosphate buffer presented too rapid gelation and phase separation, leading to poor printing results. One particularly promising formulation composed of SHC and BGP, when printed at a shear rate of 140 s-1, before its gelation time (t g ⩽ 15 min), resulted in good printability and 3D structures with rigidity comparable with the alginate/gelatin bioink. The methodology introduced in this paper could be used to evaluate the printability of other time- and temperature-dependent biomaterial inks in the future.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Quitosana/química , Tinta , Alginatos/química , Força Compressiva , Gelatina/química , Humanos , Hidrogéis/química , Teste de Materiais , Impressão Tridimensional , Reologia , Temperatura , Alicerces Teciduais/química , Viscosidade
11.
ACS Biomater Sci Eng ; 6(1): 288-297, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463194

RESUMO

Cell microencapsulation is a promising approach to improve cell therapy outcomes by protecting injected cells from rapid dispersion and allowing bidirectional diffusion of nutrients, oxygen, and waste that promote cell survival in the target tissues. Here, we describe a simple and scalable emulsification method to encapsulate animal cells in chitosan microbeads using thermosensitive gel formulations without any chemical modification and cross-linker. The process consists of a water-in-oil emulsion where the aqueous phase droplets contain cells (L929 fibroblasts or human mesenchymal stromal cells), chitosan acidic solution and gelling agents (sodium hydrogen carbonate and phosphate buffer or beta-glycerophosphate). The oil temperature is maintained at 37 °C, allowing rapid physical gelation of the microbeads. Alginate beads prepared with the same method were used as a control. Microbeads with a diameter of 300-450 µm were successfully produced. Chitosan and alginate (2% w/v) microbeads presented similar rigidity in compression, but chitosan microbeads endured >80% strain without rupture, while alginate microbeads presented fragile breakage at <50% strain. High cell viability and metabolic activity were observed after up to 7 days in culture for encapsulated cells. Mesenchymal stromal cells encapsulated in chitosan microbeads released higher amounts of the vascular endothelial growth factor after 24 h compared to the cells encapsulated in manually cast macrogels. Moreover, microbeads were injectable through 23G needles without significant deformation or rupture. The emulsion-generated chitosan microbeads are a promising delivery vehicle for therapeutic cells because of their cytocompatibility, biodegradation, mechanical strength, and injectability. Clinical-scale encapsulation of therapeutic cells such as mesenchymal stromal cells in chitosan microbeads can readily be achieved using this simple and scalable emulsion-based process.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Quitosana , Microesferas , Alginatos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular
12.
Mater Sci Eng C Mater Biol Appl ; 100: 715-723, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948109

RESUMO

The search for novel, more compliant vascular grafts for the replacement of blood vessels is ongoing, and predictive tools are needed to identify the most promising biomaterials. A simple analytical model was designed that enables the calculation of the ratio between the ultimate stress (σult) and the elastic modulus (E). To reach both the compliance of small-diameter coronary arteries (0.0725%/mmHg) and a burst pressure of 2031 mmHg, a material with a minimum σult/E ratio of 1.78 is required. Based on this result and on data from the literature, random electrospun Polyurethane/Polycaprolactone (PU/PCL) tubular scaffolds were fabricated and compared to commercial ePTFE prostheses. PU/PCL grafts showed mechanical properties close to those of native arteries, with a circumferential elastic modulus of 4.8 MPa and a compliance of 0.036%/mmHg at physiological pressure range (80-120 mmHg) for a 145 µm-thick prosthesis. In contrast, commercial expanded polytetrafluoroethylene (ePTFE) grafts presented a high Young's modulus (17.4 MPa) and poor compliance of 0.0034%/mmHg. The electrospun PU/PCL did not however reach the target values as its σult/E ratio was lower than expected, at 1.54, well below the calculated threshold (1.78). The model tended to overestimate both the compliance and burst pressure, with the differences between the analytical and experimental results ranging between 13 and 34%, depending on the pressure range tested. This can be explained by the anisotropy of random electrospun PU/PCL and its slightly non-linear elastic behavior, in contrast to the hypotheses of our model. Impermeability tests showed that the electrospun scaffolds were impermeable to blood for all thicknesses above 50 µm. In conclusion, this analytical model allows to select materials with suitable mechanical properties for the design of small-diameter vascular grafts. The novel electrospun PU/PCL tubular scaffolds showed strongly improved compliance as compared to commercial ePTFE prostheses.


Assuntos
Prótese Vascular , Modelos Biológicos , Módulo de Elasticidade , Permeabilidade , Poliésteres/química , Poliuretanos/química , Pressão , Estresse Mecânico , Resistência à Tração , Alicerces Teciduais/química
13.
Tissue Eng Part A ; 25(5-6): 303-313, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30251916

RESUMO

IMPACT STATEMENT: A thermosensitive chitosan-based hydrogel was developed, which mimics the mechanical properties of the human nucleus pulposus (NP) tissue and provides a suitable environment for seeded NP cells to live and produce glycosaminoglycans. This scaffold is injectable through 25G needle and rapidly gels in vivo at body temperature. It has the potential to restore mechanical properties and stimulate biological repair of the degenerated intervertebral disc (IVD). It could therefore be used for the minimally invasive treatment of degenerated IVD, which affects more than one person out of five in the world.


Assuntos
Quitosana/farmacologia , Hidrogéis/farmacologia , Injeções , Núcleo Pulposo/fisiologia , Regeneração/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Bovinos , Força Compressiva , Glicosaminoglicanos/biossíntese , Humanos , Degeneração do Disco Intervertebral/terapia , Cinética , Pessoa de Meia-Idade , Núcleo Pulposo/efeitos dos fármacos , Concentração Osmolar , Reologia , Resistência ao Cisalhamento
14.
Eur Radiol Exp ; 2(1): 28, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30302580

RESUMO

BACKGROUND: To evaluate residual endoleak and thrombus organisation with shear wave imaging (SWI) after endoleak embolisation through an animal study. METHODS: This prospective experimental study involved eight dogs with creation of 16 iliac aneurysms and type I endoleak after endovascular aneurysm repair (EVAR). Embolisation agents were injected into the sac to seal endoleak. SWI and colour flow Doppler ultrasound (DUS) were performed at implantation, one week, and one and three months after implantation; for three dogs, SWI and DUS were also performed six months after implantation. Digital subtraction angiography and contrast-enhanced computed tomography were performed at sacrifice. Macroscopic and histopathological analyses were processed to identify regions of interest (ROIs) for endoleak, fresh thrombus, organised thrombus and embolisation agent, where SWI elasticity moduli were compared. RESULTS: At sacrifice, nine aneurysms had residual endoleak, while seven were sealed. Ten had a fresh and 15 had an organised thrombus. SWI was able to detect all endoleaks, including two cases undetected with DUS. Elasticity moduli of 0.2 kPa ± 0.1 kPa (mean ± SD), 9.5 kPa ± 3.3 kPa, 48.1 kPa ± 21.3 kPa and 44.9 kPa ± 23.7 kPa were found in the ROIs positioned in endoleaks, fresh thrombi, organised thrombi and embolisation agent, respectively. Elasticity values of endoleak and fresh thrombus were lower than those of organised thrombi and embolisation agent (p < 0.001). Stiffness of fresh thrombus at one week (8.7 kPa ± 3.6 kPa) increased at three months (30.2 kPa ± 13.8 kPa), indicating thrombus maturation (p < 0.001). CONCLUSIONS: In a dog model of iliac EVAR, SWI was able to identify endoleak, thrombus maturation and embolising agents after endoleak embolisation.

15.
Future Sci OA ; 4(4): FSO284, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29682319
16.
Int J Biol Macromol ; 113: 132-141, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452185

RESUMO

Chitosan (CH) hydrogels with remarkable mechanical properties and rapid gelation rate were recently synthesized by combining sodium hydrogen carbonate (SHC) with another weak base, such as beta-glycerophosphate (BGP). To improve their biological responses, in the present study, chondroitin sulfate (CS) was added to these CH hydrogels. Hydrogel characteristics in terms of pH and osmolarity, as well as rheological, mechanical, morphological and swelling properties, were studied in the absence and presence of CS. Effect of CS addition on cytocompatibility of hydrogels was also assessed by evaluating the viability and metabolic activity of encapsulated L929 fibroblasts. New CH hydrogels containing CS were thermosensitive and injectable with pH and osmolality close to physiological levels and enhanced swelling capacity. Encapsulated cells were able to maintain their viability and proliferative capacity up to 7 days and CS addition improved the viability of the cells, particularly in serum-free conditions. Addition of CS showed a reducing and dose-dependent effect on the mechanical strength of the hydrogels after complete gelation. This work provides evidence that CH-CS hydrogels prepared with a combination of SHC and BGP as a gelling agent have a promising potential to be used as thermosensitive, injectable and biocompatible matrices with tunable mechanical properties for cell therapy applications.


Assuntos
Materiais Biocompatíveis/química , Terapia Baseada em Transplante de Células e Tecidos , Quitosana/química , Sulfatos de Condroitina/química , Hidrogéis/química , Fenômenos Mecânicos , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Injeções , Camundongos , Concentração Osmolar , Porosidade
17.
Acta Biomater ; 64: 94-105, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28927932

RESUMO

The success of endovascular repair of abdominal aortic aneurysms remains limited due to the development of endoleaks. Sac embolization has been proposed to manage endoleaks, but current embolizing materials are associated with frequent recurrence. An injectable agent that combines vascular occlusion and sclerosing properties has demonstrated promise for the treatment of endoleaks. Moreover, the inhibition of aneurysmal wall degradation via matrix metalloproteinases (MMPs) may further prevent aneurysm progression. Thus, an embolization agent that promotes occlusion, MMP inhibition and endothelial ablation was hypothesized to provide a multi-faceted approach for endoleak treatment. In this study, an injectable, occlusive chitosan (CH) hydrogel containing doxycycline (DOX)-a sclerosant and MMP inhibitor-was developed. Several CH-DOX hydrogel formulations were characterized for their mechanical and sclerosing properties, injectability, DOX release rate, and MMP inhibition. An optimized formulation was assessed for its short-term ability to occlude blood vessels in vivo. All formulations were injectable and gelled rapidly at body temperature. Only hydrogels prepared with 0.075M sodium bicarbonate and 0.08M phosphate buffer as the gelling agent presented sufficient mechanical properties to immediately impede physiological flow. DOX release from this gel was in a two-stage pattern: a burst release followed by a slow continuous release. Released DOX was bioactive and able to inhibit MMP-2 activity in human glioblastoma cells. Preliminary in vivo testing in pig renal arteries showed immediate and delayed embolization success of 96% and 86%, respectively. Altogether, CH-DOX hydrogels appear to be promising new multifunctional embolic agents for the treatment of endoleaks. STATEMENT OF SIGNIFICANCE: An injectable embolizing chitosan hydrogel releasing doxycycline (DOX) was developed as the first multi-faceted approach for the occlusion of blood vessels. It combines occlusive properties with DOX sclerosing and MMP inhibition properties, respectively known to prevent recanalization process and to counteract the underlying pathophysiology of vessel wall degradation and aneurysm progression. After drug release, the biocompatible scaffold can be invaded by cells and slowly degrade. Local DOX delivery requires lower drug amount and decreases risks of side effects compared to systemic administration. This new gel could be used for the prevention or treatment of endoleaks after endovascular aneurysm repair, but also for the embolization of other blood vessels such as venous or vascular malformations.


Assuntos
Aneurisma da Aorta Abdominal/terapia , Quitosana , Doxiciclina , Endoleak/prevenção & controle , Inibidores de Proteases , Soluções Esclerosantes , Animais , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacologia , Cães , Doxiciclina/química , Doxiciclina/farmacologia , Gelatinases/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Soluções Esclerosantes/química , Soluções Esclerosantes/farmacologia
18.
Biointerphases ; 12(1): 010501, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325051

RESUMO

In an effort to rationalize and optimize an antiapoptotic coating combining chondroitin sulfate (CS) and epidermal growth factor (EGF) for vascular applications, the authors here report the comparison of two grafting strategies aiming to display EGF in an oriented fashion on CS. For that purpose, the authors produced, purified, and characterized a chimeric protein corresponding to EGF that was N-terminally fused to a cysteine and a coil peptide. The chimera was covalently immobilized via its free thiol group or captured via coiled-coil interactions at the surface of a biosensor or on a chondroitin sulfate coating in multiwell plates, mimicking the coating that was previously developed by them for stent-graft surfaces. The interactions of grafted EGF with the soluble domain of its receptor or the impact of grafted EGF upon vascular smooth muscle survival in proapoptotic conditions indicated that the coiled-coil based tethering was the best approach to display EGF. These results, combined to direct enzyme-linked immunosorbent assay measurements, indicated that the coiled-coil tethering approach allowed increasing the amount of bioavailable EGF when compared to covalent coupling, rather than the total amount of grafted EGF, while using much lower concentrations of tagged EGF during incubation.


Assuntos
Sulfatos de Condroitina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacocinética , Proteínas Imobilizadas/metabolismo , Proteínas Imobilizadas/farmacocinética , Animais , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Ligação Proteica , Ratos
19.
Macromol Biosci ; 17(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28116831

RESUMO

Strong injectable chitosan thermosensitive hydrogels can be created, without chemical modification, by combining sodium hydrogen carbonate with another weak base, namely, beta-glycerophosphate (BGP) or phosphate buffer (PB). Here the influence of gelling agent concentration on the mechanical properties, gelation kinetics, osmolality, swelling, and compatibility for cell encapsulation, is studied in order to find the most optimal formulations and demonstrate their potential for cell therapy and tissue engineering. The new formulations present up to a 50-fold increase of the Young's modulus after gelation compared with conventional chitosan-BGP hydrogels, while reducing the ionic strength to the level of iso-osmolality. Increasing PB concentration accelerates gelation but reduces the mechanical properties. Increasing BGP also has this effect, but to a lesser extent. Cells can be easily encapsulated by mixing the cell suspension within the hydrogel solution at room temperature, prior to rapid gelation at body temperature. After encapsulation, L929 mouse fibroblasts are homogeneously distributed within scaffolds and present a strongly increased viability and growth, when compared with conventional chitosan-BGP hydrogels. Two particularly promising formulations are evaluated with human mesenchymal stem cells. Their viability and metabolic activity are maintained over 7 d in vitro.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Quitosana/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Terapia Baseada em Transplante de Células e Tecidos/métodos , Quitosana/uso terapêutico , Glicerofosfatos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Hidrogéis/química , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Camundongos , Concentração Osmolar , Reologia
20.
Cardiovasc Intervent Radiol ; 40(5): 735-743, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28050660

RESUMO

INTRODUCTION: Onyx and ethanol are well-known embolic and sclerotic agents that are frequently used in embolization. These agents present advantages and disadvantages regarding visibility, injection control and penetration depth. Mixing both products might yield a new product with different characteristics. The aim of this study is to evaluate the injectability, radiopacity, and mechanical and occlusive properties of different mixtures of Onyx 18 and ethanol in vitro and in vivo (in a swine model). MATERIALS AND METHODS: Various Onyx 18 and ethanol formulations were prepared and tested in vitro for their injectability, solidification rate and shrinkage, cohesion and occlusive properties. In vivo tests were performed using 3 swine. Ease of injection, radiopacity, cohesiveness and penetration were analyzed using fluoroscopy and high-resolution CT. RESULTS: All mixtures were easy to inject through a microcatheter with no resistance or blockage in vitro and in vivo. The 50%-ethanol mixture showed delayed copolymerization with fragmentation and proximal occlusion. The 75%-ethanol mixture showed poor radiopacity in vivo and was not tested in vitro. The 25%-ethanol mixture showed good occlusive properties and accepted penetration and radiopacity. CONCLUSION: Mixing Onyx and ethanol is feasible. The mixture of 25% of ethanol and 75% of Onyx 18 could be a new sclero-embolic agent. Further research is needed to study the chemical changes of the mixture, to confirm the significance of the added sclerotic effect and to find out the ideal mixture percentages.


Assuntos
Embolização Terapêutica/métodos , Etanol/administração & dosagem , Polivinil/administração & dosagem , Tantálio/administração & dosagem , Animais , Combinação de Medicamentos , Quimioterapia Combinada , Estudos de Viabilidade , Fluoroscopia , Humanos , Técnicas In Vitro , Injeções , Modelos Animais , Artéria Renal/diagnóstico por imagem , Reologia , Suínos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...