Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 94(5): 969-986, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526361

RESUMO

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Criança , Animais , Gatos , Humanos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Sandhoff/veterinária , Insuficiência de Múltiplos Órgãos/terapia , Vetores Genéticos , Sistema Nervoso Central/patologia , Terapia Genética
2.
J Neurooncol ; 139(2): 293-305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29767307

RESUMO

The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/terapia , Dependovirus/genética , Terapia Genética , Interferon beta/genética , Células Estromais/metabolismo , Animais , Astrócitos/citologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Regiões Promotoras Genéticas , Células Estromais/citologia
3.
Sci Transl Med ; 6(231): 231ra48, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24718858

RESUMO

Progressive debilitating neurological defects characterize feline G(M1) gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal ß-galactosidase. No effective therapy exists for affected children, who often die before age 5 years. An adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of G(M1) gangliosidosis. Gene therapy normalized ß-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated G(M1) animals was >38 months, compared to 8 months for untreated animals. Seven of the eight treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the G(M1) gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder.


Assuntos
Encéfalo/patologia , Terapia Genética , Doenças do Sistema Nervoso/terapia , Animais , Cruzamento , Gatos , Dependovirus/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Lisossomos/enzimologia , Imageamento por Ressonância Magnética , Masculino , Especificidade de Órgãos , Análise de Sobrevida , beta-Galactosidase/genética , beta-Galactosidase/uso terapêutico
4.
Mol Ther ; 21(7): 1306-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689599

RESUMO

Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.


Assuntos
Doenças do Gato/enzimologia , Doenças do Gato/terapia , Doença de Sandhoff/enzimologia , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Doenças do Gato/genética , Gatos , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/genética , Doença de Sandhoff/genética , beta-N-Acetil-Hexosaminidases/genética
5.
PLoS One ; 5(10): e13468, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976108

RESUMO

BACKGROUND: GM1-gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid ß-galactosidase (ßgal), which results in the accumulation of GM1-ganglioside and its asialo-form (GA1) primarily in the CNS. Age of onset ranges from infancy to adulthood, and excessive ganglioside accumulation produces progressive neurodegeneration and psychomotor retardation in humans. Currently, there are no effective therapies for the treatment of GM1-gangliosidosis. METHODOLOGY/PRINCIPAL FINDINGS: In this study we examined the effect of thalamic infusion of AAV2/1-ßgal vector in adult GM1 mice on enzyme distribution, activity, and GSL content in the CNS, motor behavior, and survival. Six to eight week-old GM1 mice received bilateral injections of AAV vector in the thalamus, or thalamus and deep cerebellar nuclei (DCN) with pre-determined endpoints at 1 and 4 months post-injection, and the humane endpoint, or 52 weeks of age. Enzyme activity was elevated throughout the CNS of AAV-treated GM1 mice and GSL storage nearly normalized in most structures analyzed, except in the spinal cord which showed ∼50% reduction compared to age-matched untreated GM1 mice spinal cord. Survival was significantly longer in AAV-treated GM1 mice (52 wks) than in untreated mice. However the motor performance of AAV-treated GM1 mice declined over time at a rate similar to that observed in untreated GM1 mice. CONCLUSIONS/SIGNIFICANCE: Our studies show that the AAV-modified thalamus can be used as a 'built-in' central node network for widespread distribution of lysosomal enzymes in the mouse cerebrum. In addition, this study indicates that thalamic delivery of AAV vectors should be combined with additional targets to supply the cerebellum and spinal cord with therapeutic levels of enzyme necessary to achieve complete correction of the neurological phenotype in GM1 mice.


Assuntos
Dependovirus/genética , Gangliosidose GM1/terapia , Vetores Genéticos , Transfecção , Animais , Cromatografia em Camada Fina , Potenciais Evocados Visuais , Gangliosidose GM1/genética , Camundongos , Reação em Cadeia da Polimerase , Teste de Desempenho do Rota-Rod , Análise de Sobrevida
6.
Mol Ther ; 16(10): 1695-702, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18714312

RESUMO

Glioblastoma multiforme (GBM) is a devastating form of brain cancer for which there is no effective treatment. Here, we report a novel approach to brain tumor therapy through genetic modification of normal brain cells to block tumor growth and effect tumor regression. Previous studies have focused on the use of vector-based gene therapy for GBM by direct intratumoral injection with expression of therapeutic proteins by tumor cells themselves. However, as antitumor proteins are generally lethal to tumor cells, the therapeutic reservoir is rapidly depleted, allowing escape of residual tumor cells. Moreover, it has been difficult to achieve consistent transduction of these highly heterogeneous tumors. In our studies, we found that transduction of normal cells in the brain with an adeno-associated virus (AAV) vector encoding interferon-beta (IFN-beta) was sufficient to completely prevent tumor growth in orthotopic xenograft models of GBM, even in the contralateral hemisphere. In addition, complete eradication of established tumors was achieved through expression of IFN-beta by neurons using a neuronal-restricted promoter. To our knowledge this is the first direct demonstration of the efficacy of targeting gene delivery exclusively to normal brain cells for brain tumor therapy.


Assuntos
Neoplasias Encefálicas/patologia , Divisão Celular , Dependovirus/genética , Glioblastoma/patologia , Animais , Vetores Genéticos , Humanos , Camundongos , Camundongos Nus , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...