Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
NPJ Digit Med ; 7(1): 138, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783037

RESUMO

The coronary angiogram is the gold standard for evaluating the severity of coronary artery disease stenoses. Presently, the assessment is conducted visually by cardiologists, a method that lacks standardization. This study introduces DeepCoro, a ground-breaking AI-driven pipeline that integrates advanced vessel tracking and a video-based Swin3D model that was trained and validated on a dataset comprised of 182,418 coronary angiography videos spanning 5 years. DeepCoro achieved a notable precision of 71.89% in identifying coronary artery segments and demonstrated a mean absolute error of 20.15% (95% CI: 19.88-20.40) and a classification AUROC of 0.8294 (95% CI: 0.8215-0.8373) in stenosis percentage prediction compared to traditional cardiologist assessments. When compared to two expert interventional cardiologists, DeepCoro achieved lower variability than the clinical reports (19.09%; 95% CI: 18.55-19.58 vs 21.00%; 95% CI: 20.20-21.76, respectively). In addition, DeepCoro can be fine-tuned to a different modality type. When fine-tuned on quantitative coronary angiography assessments, DeepCoro attained an even lower mean absolute error of 7.75% (95% CI: 7.37-8.07), underscoring the reduced variability inherent to this method. This study establishes DeepCoro as an innovative video-based, adaptable tool in coronary artery disease analysis, significantly enhancing the precision and reliability of stenosis assessment.

2.
Neurophotonics ; 11(2): 020601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577629

RESUMO

Immersive virtual reality (iVR) employs head-mounted displays or cave-like environments to create a sensory-rich virtual experience that simulates the physical presence of a user in a digital space. The technology holds immense promise in neuroscience research and therapy. In particular, virtual reality (VR) technologies facilitate the development of diverse tasks and scenarios closely mirroring real-life situations to stimulate the brain within a controlled and secure setting. It also offers a cost-effective solution in providing a similar sense of interaction to users when conventional stimulation methods are limited or unfeasible. Although combining iVR with traditional brain imaging techniques may be difficult due to signal interference or instrumental issues, recent work has proposed the use of functional near infrared spectroscopy (fNIRS) in conjunction with iVR for versatile brain stimulation paradigms and flexible examination of brain responses. We present a comprehensive review of current research studies employing an iVR-fNIRS setup, covering device types, stimulation approaches, data analysis methods, and major scientific findings. The literature demonstrates a high potential for iVR-fNIRS to explore various types of cognitive, behavioral, and motor functions in a fully immersive VR (iVR) environment. Such studies should set a foundation for adaptive iVR programs for both training (e.g., in novel environments) and clinical therapeutics (e.g., pain, motor and sensory disorders and other psychiatric conditions).

3.
J Biomed Opt ; 29(2): 026501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414657

RESUMO

Significance: The imaging depth of microscopy techniques is limited by the ability of light to penetrate biological tissue. Recent research has addressed this limitation by combining a reflectance confocal microscope with the NIR-II (or shortwave infrared) spectrum. This approach offers significant imaging depth, is straightforward in design, and remains cost-effective. However, the imaging system, which relies on intrinsic signals, could benefit from adjustments in its optical design and post-processing methods to differentiate cortical cells, such as neurons and small blood vessels. Aim: We implemented a phase contrast detection scheme to a reflectance confocal microscope using NIR-II spectral range as illumination. Approach: We analyzed the features retrieved in the images while testing the imaging depth. Moreover, we introduce an acquisition method for distinguishing dynamic signals from the background, allowing the creation of vascular maps similar to those produced by optical coherence tomography. Results: The phase contrast implementation is successful to retrieve deep images in the cortex up to 800 µm using a cranial window. Vascular maps were retrieved at similar cortical depth and the possibility of combining multiple images can provide a vessel network. Conclusions: Phase contrast reflectance confocal microscopy can improve the outlining of cortical cell bodies. With the presented framework, angiograms can be retrieved from the dynamic signal in the biological tissue. Our work presents an optical implementation and analysis techniques from a former microscope design.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Microscopia de Contraste de Fase , Neuroimagem , Microscopia Confocal/métodos
4.
Microcirculation ; 31(3): e12845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265175

RESUMO

OBJECTIVE: The role of cerebral microvasculature in cognitive dysfunction can be investigated by identifying the impact of blood flow on cortical tissue oxygenation. In this paper, the impact of capillary stalls on microcirculatory characteristics such as flow and hematocrit (Ht) in the cortical angioarchitecture is studied. METHODS: Using a deterministic mathematical model to simulate blood flow in a realistic mouse cortex, hemodynamics parameters, including pressure, flow, vessel diameter-adjustable hematocrit, and transit time are calculated as a function of stalling events. RESULTS: Using a non-linear plasma skimming model, it is observed that Ht increases in the penetrating arteries from the pial vessels as a function of cortical depth. The incidence of stalling on Ht distribution along the blood network vessels shows reduction of RBCs around the tissue near occlusion sites and decreased Ht concentration downstream from the blockage points. Moreover, upstream of the occlusion, there is a noticeable increase of the Ht, leading to larger flow resistance due to higher blood viscosity. We predicted marked changes in transit time behavior due to stalls which match trends observed in mice in vivo. CONCLUSIONS: These changes to blood cell quantity and quality may be implicated in the development of Alzheimer's disease and contribute to the course of the illness.


Assuntos
Eritrócitos , Hemodinâmica , Camundongos , Animais , Microcirculação/fisiologia , Hemodinâmica/fisiologia , Hematócrito , Eritrócitos/fisiologia , Encéfalo
5.
Comput Struct Biotechnol J ; 24: 66-86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204455

RESUMO

Background: Computational analysis of routine electroencephalogram (rEEG) could improve the accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of computed biomarkers for epilepsy in individuals undergoing rEEG. Methods: We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature for studies published between January 1961 and December 2022. We included studies reporting a computational method to diagnose epilepsy based on rEEG without relying on the identification of interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool. Results: We screened 10 166 studies, and 37 were included. The sample size ranged from 8 to 192 (mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity (38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged between 64% and 100%. We observed high methodological heterogeneity, preventing pooling of accuracy measures. Conclusion: The current literature provides insufficient evidence to reliably assess the diagnostic yield of computational analysis of rEEG. Significance: We provide guidelines regarding patient selection, reference standard, algorithms, and performance validation.

6.
Phys Med Biol ; 69(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38181421

RESUMO

A rise in blood flow velocity variations (i.e. pulsatility) in the brain, caused by the stiffening of upstream arteries, is associated with cognitive impairment and neurodegenerative diseases. The study of this phenomenon requires brain-wide pulsatility measurements, with large penetration depth and high spatiotemporal resolution. The development of dynamic ultrasound localization microscopy (DULM), based on ULM, has enabled pulsatility measurements in the rodent brain in 2D. However, 2D imaging accesses only one slice of the brain and measures only 2D-projected and hence biased velocities . Herein, we present 3D DULM: using a single ultrasound scanner at high frame rate (1000-2000 Hz), this method can produce dynamic maps of microbubbles flowing in the bloodstream and extract quantitative pulsatility measurements in the cat brain with craniotomy and in the mouse brain through the skull, showing a wide range of flow hemodynamics in both large and small vessels. We highlighted a decrease in pulsatility along the vascular tree in the cat brain, which could be mapped with ultrasound down to a few tens of micrometers for the first time. We also performed an intra-animal validation of the method by showing consistent measurements between the two sides of the Willis circle in the mouse brain. Our study provides the first step towards a new biomarker that would allow the detection of dynamic abnormalities in microvessels in the brain, which could be linked to early signs of neurodegenerative diseases.


Assuntos
Microscopia , Doenças Neurodegenerativas , Animais , Camundongos , Microscopia/métodos , Ultrassonografia/métodos , Artérias , Hemodinâmica
7.
Artigo em Inglês | MEDLINE | ID: mdl-38082787

RESUMO

Connectivity analyses of intracranial electroencephalography (iEEG) could guide surgical planning for epilepsy surgery by improving the delineation of the seizure onset zone. Traditional approaches fail to quantify important interactions between frequency components. To assess if effective connectivity based on cross-bispectrum -a measure of nonlinear multivariate cross-frequency coupling- can quantitatively identify generators of seizure activity, cross-bispectrum connectivity between channels was computed from iEEG recordings of 5 patients (34 seizures) with good postsurgical outcome. Personalized thresholds of 50% and 80% of the maximum coupling values were used to identify generating electrode channels. In all patients, outflow coupling between α (8-15 Hz) and ß (16-31 Hz) frequencies identified at least one electrode inside the resected seizure onset zone. With the 50% and 80% thresholds respectively, an average of 5 (44.7%; specificity = 82.6%) and 2 (22.5%; specificity = 99.0%) resected electrodes were correctly identified. Results show promise for the automatic identification of the seizure onset zone based on cross-bispectrum connectivity analysis.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Convulsões/diagnóstico
8.
J Cereb Blood Flow Metab ; : 271678X231214840, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988131

RESUMO

Quantifying anatomical and hemodynamical properties of the brain vasculature in vivo is difficult due to limited spatiotemporal resolution neuroimaging, variability between subjects, and bias between acquisition techniques. This work introduces a metabolically inspired vascular synthesis algorithm for creating a digital representation of the cortical blood supply in humans. Spatial organization and segment resistances of a cortical vascular network were generated. Cortical folding and macroscale arterial and venous vessels were reconstructed from anatomical MRI and MR angiography. The remaining network, including ensembles representing the parenchymal capillary bed, were synthesized following a mechanistic principle based on hydrodynamic efficiency of the cortical blood supply. We evaluated the digital model by comparing its simulated values with in vivo healthy human brain measurements of macrovessel blood velocity from phase contrast MRI and capillary bed transit times and bolus arrival times from dynamic susceptibility contrast. We find that measured and simulated values reasonably agree and that relevant neuroimaging observables can be recapitulated in silico. This work provides a basis for describing and testing quantitative aspects of the cerebrovascular circulation that are not directly observable. Future applications of such digital brains include the investigation of the organ-wide effects of simulated vascular and metabolic pathologies.

9.
Diagnostics (Basel) ; 13(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37892002

RESUMO

BACKGROUND: Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to open-heart surgery for treating severe aortic stenosis. Despite its benefits, the risk of procedural complications necessitates careful preoperative planning. METHODS: This study proposes a fully automated deep learning-based method, TAVI-PREP, for pre-TAVI planning, focusing on measurements extracted from computed tomography (CT) scans. The algorithm was trained on the public MM-WHS dataset and a small subset of private data. It uses MeshDeformNet for 3D surface mesh generation and a 3D Residual U-Net for landmark detection. TAVI-PREP is designed to extract 22 different measurements from the aortic valvular complex. A total of 200 CT-scans were analyzed, and automatic measurements were compared to the ones made manually by an expert cardiologist. A second cardiologist analyzed 115 scans to evaluate inter-operator variability. RESULTS: High Pearson correlation coefficients between the expert and the algorithm were obtained for most parameters (0.90-0.97), except for left and right coronary height (0.8 and 0.72, respectively). Similarly, the mean absolute relative error was within 5% for most measurements, except for left and right coronary height (11.6% and 16.5%, respectively). A greater consensus was observed among experts than when compared to the automatic approach, with TAVI-PREP showing no discernable bias towards either the lower or higher ends of the measurement spectrum. CONCLUSIONS: TAVI-PREP provides reliable and time-efficient measurements of the aortic valvular complex that could aid clinicians in the preprocedural planning of TAVI procedures.

10.
Sci Rep ; 13(1): 13269, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582847

RESUMO

Resting state networks (RSN), which show the connectivity in the brain in the absence of any stimuli, are increasingly important to assess brain function. Here, we investigate the changes in RSN as well as the hemodynamic changes during acute, global hypoxia. Mice were imaged at different levels of oxygen (21, 12, 10 and 8%) over the course of 10 weeks, with hypoxia and normoxia acquisitions interspersed. Simultaneous GCaMP and intrinsic optical imaging allowed tracking of both neuronal and hemodynamic changes. During hypoxic conditions, we found a global increase of both HbO and HbR in the brain. The saturation levels of blood dropped after the onset of hypoxia, but surprisingly climbed back to levels similar to baseline within the 10-min hypoxia period. Neuronal activity also showed a peak at the onset of hypoxia, but dropped back to baseline as well. Despite regaining baseline sO2 levels, changes in neuronal RSN were observed. In particular, the connectivity as measured with GCaMP between anterior and posterior parts of the brain decreased. In contrast, when looking at these same connections with HbO measurements, an increase in connectivity in anterior-posterior brain areas was observed suggesting a potential neurovascular decoupling.


Assuntos
Encéfalo , Hipóxia , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Oxigênio , Hemodinâmica
11.
Sci Rep ; 13(1): 12650, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542101

RESUMO

Predicting seizure recurrence risk is critical to the diagnosis and management of epilepsy. Routine electroencephalography (EEG) is a cornerstone of the estimation of seizure recurrence risk. However, EEG interpretation relies on the visual identification of interictal epileptiform discharges (IEDs) by neurologists, with limited sensitivity. Automated processing of EEG could increase its diagnostic yield and accessibility. The main objective was to develop a prediction model based on automated EEG processing to predict one-year seizure recurrence in patients undergoing routine EEG. We retrospectively selected a consecutive cohort of 517 patients undergoing routine EEG at our institution (training set) and a separate, temporally shifted cohort of 261 patients (testing set). We developed an automated processing pipeline to extract linear and non-linear features from the EEGs. We trained machine learning algorithms on multichannel EEG segments to predict one-year seizure recurrence. We evaluated the impact of IEDs and clinical confounders on performances and validated the performances on the testing set. The receiver operating characteristic area-under-the-curve for seizure recurrence after EEG in the testing set was 0.63 (95% CI 0.55-0.71). Predictions were still significantly above chance in EEGs with no IEDs. Our findings suggest that there are changes other than IEDs in the EEG signal embodying seizure propensity.


Assuntos
Epilepsia , Convulsões , Humanos , Estudos Retrospectivos , Convulsões/diagnóstico , Eletroencefalografia , Epilepsia/diagnóstico , Aprendizado de Máquina
12.
Nat Commun ; 14(1): 2982, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221202

RESUMO

In age-related neurodegenerative diseases, pathology often develops slowly across the lifespan. As one example, in diseases such as Alzheimer's, vascular decline is believed to onset decades ahead of symptomology. However, challenges inherent in current microscopic methods make longitudinal tracking of such vascular decline difficult. Here, we describe a suite of methods for measuring brain vascular dynamics and anatomy in mice for over seven months in the same field of view. This approach is enabled by advances in optical coherence tomography (OCT) and image processing algorithms including deep learning. These integrated methods enabled us to simultaneously monitor distinct vascular properties spanning morphology, topology, and function of the microvasculature across all scales: large pial vessels, penetrating cortical vessels, and capillaries. We have demonstrated this technical capability in wild-type and 3xTg male mice. The capability will allow comprehensive and longitudinal study of a broad range of progressive vascular diseases, and normal aging, in key model systems.


Assuntos
Envelhecimento , Longevidade , Masculino , Animais , Camundongos , Estudos Longitudinais , Microvasos , Encéfalo
13.
J Cereb Blood Flow Metab ; 43(10): 1713-1725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36647768

RESUMO

Microvascular stalling, the process occurring when a capillary temporarily loses perfusion, has gained increasing interest in recent years through its demonstrated presence in various neuropathologies. Studying the impact of such stalls on the surrounding brain tissue is of paramount importance to understand their role in such diseases. Despite efforts trying to study the stalling events, investigations are hampered by their elusiveness and scarcity. In an attempt to alleviate these hurdles, we present here a novel methodology enabling transient occlusions of targeted microvascular segments through multiphoton excitation of Rose Bengal, an established photothrombotic agent. With n = 7 mice C57BL/6 J (5 males and 2 females) and 95 photothrombosis trials, we demonstrate the ability of triggering reversible blockages by illuminating a capillary segment during ∼300 s at 1000 nm, using a standard Ti:Sapphire femtosecond laser. Furthermore, we performed concurrent Optical Coherence Microscopy (OCM) angiography imaging of the microvascular network to highlight the specificity of the targeted occlusion and its duration. Through comparison with a control group, we conclude that blood flow cessation is indeed created by the photothrombotic agent via multiphoton excitation and is temporary, followed by a flow recovery in less than 24 h. Moreover, Immunohistology points toward a stalling mechanism driven by adherence of the neutrophil in the vascular lumen. This observation seems to be promoted by the inflammation locally created via multiphoton activation of Rose Bengal.


Assuntos
Lasers , Rosa Bengala , Masculino , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Capilares , Microscopia de Fluorescência por Excitação Multifotônica
14.
BMJ Open ; 13(1): e066932, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693684

RESUMO

INTRODUCTION: The diagnosis of epilepsy frequently relies on the visual interpretation of the electroencephalogram (EEG) by a neurologist. The hallmark of epilepsy on EEG is the interictal epileptiform discharge (IED). This marker lacks sensitivity: it is only captured in a small percentage of 30 min routine EEGs in patients with epilepsy. In the past three decades, there has been growing interest in the use of computational methods to analyse the EEG without relying on the detection of IEDs, but none have made it to the clinical practice. We aim to review the diagnostic accuracy of quantitative methods applied to ambulatory EEG analysis to guide the diagnosis and management of epilepsy. METHODS AND ANALYSIS: The protocol complies with the recommendations for systematic reviews of diagnostic test accuracy by Cochrane. We will search MEDLINE, EMBASE, EBM reviews, IEEE Explore along with grey literature for articles, conference papers and conference abstracts published after 1961. We will include observational studies that present a computational method to analyse the EEG for the diagnosis of epilepsy in adults or children without relying on the identification of IEDs or seizures. The reference standard is the diagnosis of epilepsy by a physician. We will report the estimated pooled sensitivity and specificity, and receiver operating characteristic area under the curve (ROC AUC) for each marker. If possible, we will perform a meta-analysis of the sensitivity and specificity and ROC AUC for each individual marker. We will assess the risk of bias using an adapted QUADAS-2 tool. We will also describe the algorithms used for signal processing, feature extraction and predictive modelling, and comment on the reproducibility of the different studies. ETHICS AND DISSEMINATION: Ethical approval was not required. Findings will be disseminated through peer-reviewed publication and presented at conferences related to this field. PROSPERO REGISTRATION NUMBER: CRD42022292261.


Assuntos
Epilepsia , Adulto , Criança , Humanos , Reprodutibilidade dos Testes , Revisões Sistemáticas como Assunto , Epilepsia/diagnóstico , Eletroencefalografia , Biomarcadores , Computadores , Metanálise como Assunto
15.
Can J Neurol Sci ; 50(1): 72-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850674

RESUMO

OBJECTIVE: Uncontrolled epilepsy creates a constant source of worry for patients and puts them at a high risk of injury. Identifying recurrent "premonitory" symptoms of seizures and using them to recalibrate seizure prediction algorithms may improve prediction performances. This study aimed to investigate patients' ability to predict oncoming seizures based on preictal symptoms. METHODS: Through an online survey, demographics and clinical characteristics (e.g., seizure frequency, epilepsy duration, and postictal symptom duration) were collected from people with epilepsy and caregivers across Canada. Respondents were asked to answer questions regarding their ability to predict seizures through warning symptoms. A total of 196 patients and 150 caregivers were included and were separated into three groups: those who reported warning symptoms within the 5 minutes preceding a seizure, prodromes (symptoms earlier than 5 minutes before seizure), and no warning symptoms. RESULTS: Overall, 12.2% of patients and 12.0% of caregivers reported predictive prodromes ranging from 5 minutes to more than 24 hours before the seizures (median of 2 hours). The most common were dizziness/vertigo (28%), mood changes (26%), and cognitive changes (21%). Statistical testing showed that respondents who reported prodromes also reported significantly longer postictal recovery periods compared to those who did not report predictive prodromes (P < 0.05). CONCLUSION: Findings suggest that patients who present predictive seizure prodromes may be characterized by longer patient-reported postictal recovery periods. Studying the correlation between seizure severity and predictability and investigating the electrical activity underlying prodromes may improve our understanding of preictal mechanisms and ability to predict seizures.


Assuntos
Cuidadores , Epilepsia , Humanos , Epilepsia/diagnóstico , Convulsões , Inquéritos e Questionários , Algoritmos , Eletroencefalografia
16.
J Cardiovasc Transl Res ; 16(3): 513-525, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460017

RESUMO

Cardiovascular diseases are the leading cause of death globally and contribute significantly to the cost of healthcare. Artificial intelligence (AI) is poised to reshape cardiology. Using supervised and unsupervised learning, the two main branches of AI, several applications have been developed in recent years to improve risk prediction, allow large-scale analysis of medical data, and phenotype patients for personalized medicine. In this review, we examine the key advances in AI in cardiology and its limitations regarding bias in the data, standardization in reporting, data access, and model trust and accountability in cases of error. Finally, we discuss implementation methods to unleash AI's potential in making healthcare more accurate and efficient. Several steps need to be followed and challenges overcome in order to successfully integrate AI in clinical practice and ensure its longevity.


Assuntos
Cardiologia , Doenças Cardiovasculares , Humanos , Inteligência Artificial , Algoritmos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Medicina de Precisão
17.
Commun Biol ; 5(1): 1277, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414704

RESUMO

Aortic valve (AoV) abnormalities during embryogenesis are a major risk for the development of aortic valve stenosis (AVS) and cardiac events later in life. Here, we identify an unexpected role for Angiopoietin-like 2 (ANGPTL2), a pro-inflammatory protein secreted by senescent cells, in valvulogenesis. At late embryonic stage, mice knocked-down for Angptl2 (Angptl2-KD) exhibit a premature thickening of AoV leaflets associated with a dysregulation of the fine balance between cell apoptosis, senescence and proliferation during AoV remodeling and a decrease in the crucial Notch signalling. These structural and molecular abnormalities lead toward spontaneous AVS with elevated trans-aortic gradient in adult mice of both sexes. Consistently, ANGPTL2 expression is detected in human fetal semilunar valves and associated with pathways involved in cell cycle and senescence. Altogether, these findings suggest that Angptl2 is essential for valvulogenesis, and identify Angptl2-KD mice as an animal model to study spontaneous AVS, a disease with unmet medical need.


Assuntos
Proteína 2 Semelhante a Angiopoietina , Estenose da Valva Aórtica , Valva Aórtica , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Transdução de Sinais , Proteína 2 Semelhante a Angiopoietina/fisiologia
18.
BMC Geriatr ; 22(1): 648, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941561

RESUMO

BACKGROUND: Aging is associated with an increased likelihood of developing dementia, but a growing body of evidence suggests that certain modifiable risk factors may help prevent or delay dementia onset. Among these, physical activity (PA) has been linked to better cognitive performance and brain functions in healthy older adults and may contribute to preventing dementia. The current pilot study investigated changes in behavioral and brain activation patterns over a 1-year period in individuals with mild cognitive impairment (MCI) and healthy controls taking part in regular PA. METHODS: Frontal cortical response during a dual-task walking paradigm was investigated at baseline, at 6 months (T6), and at 12 months (T12) by means of a portable functional Near-Infrared Spectroscopy (fNIRS) system. The dual-task paradigm included a single cognitive task (2-back), a single motor task (walking), and a dual-task condition (2-back whilst walking). RESULTS: Both groups showed progressive improvement in cognitive performance at follow-up visits compared to baseline. Gait speed remained stable throughout the duration of the study in the control group and increased at T6 for those with MCI. A significant decrease in cortical activity was observed in both groups during the cognitive component of the dual-task at follow-up visits compared to baseline, with MCI individuals showing the greatest improvement. CONCLUSIONS: The observations of this pilot study suggest that taking part in regular PA may be especially beneficial for both cognitive performance and brain functions in older adulthood and, especially, in individuals with MCI. Our findings may serve as preliminary evidence for the use of PA as a potential intervention to prevent cognitive decline in individuals at greater risk of dementia.


Assuntos
Disfunção Cognitiva , Demência , Idoso , Encéfalo , Cognição , Demência/complicações , Marcha/fisiologia , Humanos , Projetos Piloto
19.
PLoS One ; 17(4): e0266553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468172

RESUMO

Increasing evidence associates apathy with worsening in cognitive performance and greater risk of dementia, in both clinical and healthy older populations. In older adults with neurocognitive disorders, apathy has also been related to specific fronto-subcortical structural abnormalities, thus differentiating apathy and major depressive disorder. Yet, the neural mechanisms associated with apathy in healthy older adults are still unclear. In the present study, we investigated the frontal cortical response during a dual-task walking paradigm in forty-one healthy older adults with and without apathy symptoms, controlling for depressive symptoms. The dual-task walking paradigm included a single cognitive task (2-back), a single motor task (walking), and a dual-task condition (2-back whilst walking). The cortical response was measured by means of functional Near-Infrared Spectroscopy (fNIRS). The results revealed that participants with apathy symptoms showed greater activation of subregions of the prefrontal cortex and of the premotor cortex compared to healthy controls during the single cognitive component of the dual-task paradigm, whilst cognitive performance was equivalent between groups. Moreover, increased cortical response during the cognitive task was associated with higher odds of exhibiting apathy symptoms, independently of depressive symptoms. These findings suggest that apathy may be related to differential brain activation patterns in healthy older individuals and are in line with previous evidence of the distinctiveness between apathy and depression. Future research may explore the long-term effects of apathy on the cortical response in healthy older adults.


Assuntos
Apatia , Transtorno Depressivo Maior , Idoso , Lobo Frontal/fisiologia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Caminhada/fisiologia
20.
Behav Brain Res ; 428: 113884, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35398230

RESUMO

Magnetic resonance imaging (MRI) is currently under investigation as a non-invasive tool to monitor neurodevelopmental trajectories and predict risk of cognitive deficits following white matter injury (WMI) in very preterm infants. In the present study, we evaluated the capacity of multimodal MRI (high-resolution T2-weighted imaging and diffusion tensor imaging)to assess changes following WMI and their relationship to learning and memory performance in Wistar rats as it has been demonstrated for preterm infants. Multimodal MRI performed at P31-P32 shown that animals exposed to neonatal LPS could be classified into two groups: minimal and overt injury. Animals with overt injury had significantly enlarged ventricles, hippocampal atrophy, diffusivity changes in hippocampal white and gray matter, in the striatum and the cortex. Following neonatal LPS exposure, animals presented learning and memory impairments as shown at the fear conditioning test at P36-P38. The severity of learning and memory deficits was related to increased mean diffusivity in the hippocampal region. In conclusion, non-invasive multimodal MRI (volumetric and DTI) assessed and classified the extent of injury at long-term following neonatal LPS exposure. Microstructural changes in the hippocampus at DTI were associated to learning and memory impairments. This further highlights the utility of multimodal MRI as a non-invasive quantitative biomarker following perinatal inflammation.


Assuntos
Lesões Encefálicas , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem , Inflamação/patologia , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Gravidez , Ratos , Ratos Wistar , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...