Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 69(12): 3244-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25125676

RESUMO

OBJECTIVES: Voriconazole, itraconazole and posaconazole are members of the azole family and widely used for the treatment of aspergillosis. They act by inhibiting the activity of the fungal Cyp51A enzyme. The emergence of environmental azole-resistant Aspergillus fumigatus strains raises major concerns for human health. METHODS: Recently, a new cyp51A-mediated resistance mechanism (namely TR46/Y121F/T289A) was described in clinical samples and patient-frequented environmental sites. In an azole-naive patient, we isolated an A. fumigatus strain that was not susceptible to voriconazole but was susceptible to itraconazole and posaconazole. RESULTS: A molecular analysis indicated a single Y121F substitution without the TR46 or T289A alterations, which to our knowledge has never been reported. Structure modelling and molecular dynamics offered an explanation for the resistance profile consistent with the structural differences between the three azoles. CONCLUSIONS: Taken together, these observations suggest an original mechanism conferring resistance to azoles mediated by cyp51A of environmental origin. This uncommon susceptibility pattern might represent a 'missing link' between the wild-type A. fumigatus and the fully azole-resistant strain harbouring the TR46/Y121F/T289A mutations.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Itraconazol/farmacologia , Mutação de Sentido Incorreto , Triazóis/farmacologia , Voriconazol/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , Farmacorresistência Fúngica , Dados de Sequência Molecular , Análise de Sequência de DNA
2.
J Gen Virol ; 86(Pt 2): 405-412, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659760

RESUMO

The envelope glycoprotein located at the outermost surface of the flavivirus particle mediates entry of virus into host cells. In this study, the involvement of domain III of West Nile virus (WNV-DIII) envelope protein in binding to host cell surface was investigated. WNV-DIII was first expressed as a recombinant protein and purified after a solubilization and refolding procedure. The refolded WNV-DIII protein displays a content of beta-sheets consistent with known homologous structures of other flavivirus envelope DIII, shown by using circular dichroism analysis. Purified recombinant WNV-DIII protein was able to inhibit WNV entry into Vero cells and C6/36 mosquito cells. Recombinant WNV-DIII only partially blocked the entry of dengue-2 (Den 2) virus into Vero cells. However, entry of Den 2 virus into C6/36 was blocked effectively by recombinant WNV-DIII. Murine polyclonal serum produced against recombinant WNV-DIII protein inhibited infection with WNV and to a much lesser extent with Den 2 virus, as demonstrated by plaque neutralization assays. Together these results provided strong evidence that immunoglobulin-like DIII of WNV envelope protein is responsible for binding to receptor on the surface of host cells. The data also suggest that similar attachment molecule(s) or receptor(s) were used by WNV and Den 2 virus for entry into C6/36 mosquito cells.


Assuntos
Antígenos Virais/farmacologia , Proteínas do Envelope Viral/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antígenos Virais/biossíntese , Linhagem Celular , Chlorocebus aethiops , Culicidae , Vírus da Dengue/efeitos dos fármacos , Soros Imunes/imunologia , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Solubilidade , Células Vero , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/química , Vírus do Nilo Ocidental/imunologia
3.
Biochem Biophys Res Commun ; 325(1): 374-80, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15522242

RESUMO

To promote viral entry, replication, release, and spread to neighboring cells, many cytolytic animal viruses encode proteins responsible for modification of host cell membrane permeability and for formation of ion channels in host cell membranes during their life cycles. In this study, we show that the envelope (E) protein of severe acute respiratory syndrome-associated coronavirus can induce membrane permeability changes when expressed in Escherichia coli. E protein expressed in bacterial and mammalian cells under reducing conditions existed as monomers, but formed homodimer and homotrimer under non-reducing conditions. Site-directed mutagenesis studies revealed that two cysteine residues of the E protein were essential for oligomerization, leading to induction of membrane permeability. This is the first report demonstrating that a coronavirus-encoded protein could modify membrane permeability in E. coli cells.


Assuntos
Permeabilidade da Membrana Celular , Escherichia coli/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Cisteína/metabolismo , Análise Mutacional de DNA , Escherichia coli/genética , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
4.
J Mol Recognit ; 15(5): 272-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12447903

RESUMO

The protease of HIV plays a critical role in the maturation of the infectious particles of the virus. The enzyme has therefore been extensively studied with the objective of developing therapeutics that inhibit viral proliferation. We have produced monoclonal antibodies specific for the HIV-1 protease, and selected those that inhibit enzyme function for use as probes to study the enzyme's activity and as an eventual aid for the development of potential inhibitors targeted to regions other than the active site. We have characterized two such mAbs, F11.2.32 and 1696, which have inhibition constants in the low nanomolar range and which recognize epitopes from different regions of the protease. The crystal structures of the two antibodies, both in the free state as well as complexes with peptide fragments corresponding to their respective epitopes, have been solved. The structural analyses, taken together with other functional data on the antibodies, suggest mechanisms of protease inhibition by these antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Inibidores da Protease de HIV/imunologia , Protease de HIV/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/farmacologia , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , HIV-1/enzimologia , HIV-1/imunologia , Técnicas In Vitro , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 2): 1780-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351821

RESUMO

Three-beam interference experiments have been performed with crystals of two glycosidases: guinea-fowl hexagonal lysozyme, MW 14.3 kDa, and C. thermocellum endoglucanase CelA, MW 40 kDa. In both cases triplet phases could be estimated. Experimental parameters and details of the procedure are presented along with some examples of the results. The average differences between the estimated phases and those calculated from the crystallographic refinements were 17.9 and 15.9 degrees, respectively. A brief discussion of alternative methods for physical phase acquisition is given, including possible strategies for the measurement and application of experimental phases in macromolecular crystallography.


Assuntos
Celulase/química , Muramidase/química , Animais , Aves , Clostridium/enzimologia , Cristalografia por Raios X/métodos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química
6.
EMBO J ; 21(3): 427-39, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11823435

RESUMO

The crystal structure of the catalytic core of murine terminal deoxynucleotidyltransferase (TdT) at 2.35 A resolution reveals a typical DNA polymerase beta-like fold locked in a closed form. In addition, the structures of two different binary complexes, one with an oligonucleotide primer and the other with an incoming ddATP-Co(2+) complex, show that the substrates and the two divalent ions in the catalytic site are positioned in TdT in a manner similar to that described for the human DNA polymerase beta ternary complex, suggesting a common two metal ions mechanism of nucleotidyl transfer in these two proteins. The inability of TdT to accommodate a template strand can be explained by steric hindrance at the catalytic site caused by a long lariat-like loop, which is absent in DNA polymerase beta. However, displacement of this discriminating loop would be sufficient to unmask a number of evolutionarily conserved residues, which could then interact with a template DNA strand. The present structure can be used to model the recently discovered human polymerase mu, with which it shares 43% sequence identity.


Assuntos
DNA Nucleotidilexotransferase/química , Sequência de Aminoácidos , Animais , Cristalização , DNA Nucleotidilexotransferase/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
7.
Structure ; 9(10): 887-95, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11591344

RESUMO

BACKGROUND: Since the demonstration that the protease of the human immunodeficiency virus (HIV Pr) is essential in the viral life cycle, this enzyme has become one of the primary targets for antiviral drug design. The murine monoclonal antibody 1696 (mAb1696), produced by immunization with the HIV-1 protease, inhibits the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates with inhibition constants in the low nanomolar range. The antibody cross-reacts with peptides that include the N terminus of the enzyme, a region that is highly conserved in sequence among different viral strains and that, furthermore, is crucial for homodimerization to the active enzymatic form. RESULTS: We report here the crystal structure at 2.7 A resolution of a recombinant single-chain Fv fragment of mAb1696 as a complex with a cross-reactive peptide of the HIV-1 protease. The antibody-antigen interactions observed in this complex provide a structural basis for understanding the origin of the broad reactivity of mAb-1696 for the HIV-1 and HIV-2 proteases and their respective N-terminal peptides. CONCLUSION: A possible mechanism of HIV-protease inhibition by mAb1696 is proposed that could help the design of inhibitors aimed at binding inactive monomeric species.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/imunologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , Protease de HIV/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação de Anticorpos , Reações Cruzadas , Cristalografia por Raios X , Protease de HIV/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Químicos , Modelos Moleculares , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Conformação Proteica
8.
Cell ; 105(1): 137-48, 2001 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11301009

RESUMO

Semliki Forest virus (SFV) has been extensively studied as a model for analyzing entry of enveloped viruses into target cells. Here we describe the trace of the polypeptide chain of the SFV fusion glycoprotein, E1, derived from an electron density map at 3.5 A resolution and describe its interactions at the surface of the virus. E1 is unexpectedly similar to the flavivirus envelope protein, with three structural domains disposed in the same primary sequence arrangement. These results introduce a new class of membrane fusion proteins which display lateral interactions to induce the necessary curvature and direct budding of closed particles. The resulting surface protein lattice is primed to cause membrane fusion when exposed to the acidic environment of the endosome.


Assuntos
Modelos Moleculares , Vírus da Floresta de Semliki/química , Vírus da Floresta de Semliki/ultraestrutura , Proteínas Virais de Fusão/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Endossomos/química , Concentração de Íons de Hidrogênio , Fusão de Membrana , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/química
9.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 12): 1662-4, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11092939

RESUMO

The catalytic domain of murine terminal deoxynucleotidyl transferase (TdT) has been crystallized in the space group P2(1)2(1)2(1), with unit-cell parameters a = 47.1, b = 86.2, c = 111.7 A. The crystals diffract to a resolution of 2.4 A using synchrotron radiation and a full data set has been collected from the native crystals. The enzyme was shown to be active in the crystalline state.


Assuntos
DNA Nucleotidilexotransferase/química , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/isolamento & purificação , Camundongos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
10.
J Biol Chem ; 275(23): 17541-8, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10747930

RESUMO

Seeds from the legume tree Maackia amurensis contain two lectins that can agglutinate different blood cell types. Their specificity toward sialylated oligosaccharides is unique among legume lectins; the leukoagglutinin preferentially binds to sialyllactosamine (alphaNeuAc(2-3)betaGal(1-4)betaGlcNAc), whereas the hemagglutinin displays higher affinity for a disialylated tetrasaccharide (alphaNeuAc(2-3)betaGal(1-3)[alphaNeuAc(2-6)]alphaG alNAc). The three-dimensional structure of the complex between M. amurensis leukoagglutinin and sialyllactose has been determined at 2.75-A resolution using x-ray crystallography. The carbohydrate binding site consists of a deep cleft that accommodates the three carbohydrate residues of the sialyllactose. The central galactose sits in the primary binding site in an orientation that has not been observed previously in other legume lectins. The carboxyl group of sialic acid establishes a salt bridge with a lysine side chain. The glucose residue is very efficiently docked between two tyrosine aromatic rings. The complex between M. amurensis hemagglutinin and a disialylated tetrasaccharide could be modeled from the leukoagglutinin/sialyllactose crystal structure. The substitution of one tyrosine by an alanine residue is responsible for the difference in fine specificity between the two isolectins. Comparison with other legume lectins indicates that oligosaccharide specificity within this family is achieved by the recycling of structural loops in different combinations.


Assuntos
Oligossacarídeos/química , Fito-Hemaglutininas/química , Ácidos Siálicos , Sequência de Aminoácidos , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Simulação por Computador , Cristalografia por Raios X , Glicoproteínas/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software , Eletricidade Estática
11.
Protein Sci ; 8(12): 2686-96, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10631984

RESUMO

The monoclonal antibody 1696, directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates. This antibody cross-reacts with peptides that include the N-terminus of the enzyme, a region that is well conserved in sequence among different viral strains and which, furthermore, is crucial for homodimerization to the active enzymatic form. This observation, as well as antigen-binding studies in the presence of an active site inhibitor, suggest that 1696 inhibits the HIV protease by destabilizing its active homodimeric form. To characterize further how the antibody 1696 inhibits the HIV-1 and HIV-2 proteases, we have solved the crystal structure of its Fab fragment by molecular replacement and refined it at 3.0 A resolution. The antigen binding site has a deep cavity at its center, which is lined mainly by acidic and hydrophobic residues, and is large enough to accommodate several antigen residues. The structure of the Fab 1696 could form a starting basis for the design of alternative HIV protease-inhibiting molecules of broad specificity.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Inibidores da Protease de HIV/química , Protease de HIV/química , HIV-1/química , HIV-2/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento de Epitopos , Epitopos , Escherichia coli/metabolismo , Protease de HIV/imunologia , Protease de HIV/metabolismo , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/química , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação Proteica , Difração de Raios X
14.
J Mol Biol ; 267(5): 1207-22, 1997 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-9150407

RESUMO

F11.2.32, a monoclonal antibody raised against HIV-1 protease (Kd = 5 nM), which inhibits proteolytic activity of the enzyme (K(inh) = 35(+/-3)nM), has been studied by crystallographic methods. The three-dimensional structure of the complex between the Fab fragment and a synthetic peptide, spanning residues 36 to 46 of the protease, has been determined at 2.2 A resolution, and that of the Fab in the free state has been determined at 2.6 A resolution. The refined model of the complex reveals ten well-ordered residues of the peptide (P36 to P45) bound in a hydrophobic cavity at the centre of the antigen-binding site. The peptide adopts a beta hairpin-like structure in which residues P38 to P42 form a type II beta-turn conformation. An intermolecular antiparallel beta-sheet is formed between the peptide and the CDR3-H loop of the antibody; additional polar interactions occur between main-chain atoms of the peptide and hydroxyl groups from tyrosine residues protruding from CDR1-L and CDR3-H. Three water molecules, located at the antigen-antibody interface, mediate polar interactions between the peptide and the most buried hypervariable loops, CDR3-L and CDR1-H. A comparison between the free and complexed Fab fragments shows that significant conformational changes occur in the long hypervariable regions, CDR1-L and CDR3-H, upon binding the peptide. The conformation of the bound peptide, which shows no overall structural similarity to the corresponding segment in HIV-1 protease, suggests that F11.2.32 might inhibit proteolysis by distorting the native structure of the enzyme.


Assuntos
Anticorpos Monoclonais/química , Inibidores da Protease de HIV/química , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Simulação por Computador , Reações Cruzadas , Cristalografia por Raios X , Protease de HIV , Hibridomas , Fragmentos Fab das Imunoglobulinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Protein Sci ; 5(5): 966-8, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8732768

RESUMO

F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Antígenos HIV/imunologia , Inibidores da Protease de HIV/química , Protease de HIV/imunologia , HIV-1/enzimologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Reações Cruzadas , Cristalografia por Raios X , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/farmacologia , Inibidores da Protease de HIV/imunologia , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/imunologia
16.
J Biol Chem ; 270(30): 18067-76, 1995 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-7629116

RESUMO

The crystal structure of the complex between the cross-reacting antigen Guinea fowl lysozyme and the Fab from monoclonal antibody F9.13.7, raised against hen egg lysozyme, has been determined by x-ray diffraction to 3-A resolution. The antibody interacts with exposed residues of an alpha-helix and surrounding loops adjacent to the lysozyme active site cleft. The epitope of lysozyme bound by antibody F9.13.7 overlaps almost completely with that bound by antibody HyHEL10; the same 12 residues of the antigen interact with the two antibodies. The antibodies, however, have different combining sites with no sequence homology at any of their complementarity-determining regions and show a dissimilar pattern of cross-reactivity with heterologous antigens. Side chain mobility of epitope residues contributes to confer steric and electrostatic complementarity to differently shaped combining sites, allowing functional mimicry to occur. The capacity of two antibodies that have different fine specificities to bind the same area of the antigen emphasizes the operational character of the definition of an antigenic determinant. This example demonstrates that degenerate binding of the same structural motif does not require the existence of sequence homology or other chemical similarities between the different binding sites.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Muramidase/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Sequência de Bases , Aves , Reações Cruzadas , Cristalografia por Raios X , DNA , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/química , Substâncias Macromoleculares , Dados de Sequência Molecular , Muramidase/genética , Muramidase/imunologia , Mutação
17.
Protein Sci ; 3(5): 788-98, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8061608

RESUMO

The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes.


Assuntos
Muramidase/química , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/química , Sítios de Ligação , Evolução Biológica , Aves , Cristalografia por Raios X , Feminino , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Muramidase/genética , Muramidase/imunologia , Mutação , Solventes , Água/química
18.
Proc Natl Acad Sci U S A ; 90(16): 7711-5, 1993 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8356074

RESUMO

Although antibodies are highly specific, cross-reactions are frequently observed. To understand the molecular basis of this phenomenon, we studied the anti-hen egg lysozyme (HEL) monoclonal antibody (mAb) D11.15, which cross-reacts with several avian lysozymes, in some cases with a higher affinity (heteroclitic binding) than for HEL. We have determined the crystal structure of the Fv fragment of D11.15 complexed with pheasant egg lysozyme (PHL). In addition, we have determined the structure of PHL, Guinea fowl egg lysozyme, and Japanese quail egg lysozyme. Differences in the affinity of D11.15 for the lysozymes appear to result from sequence substitutions in these antigens at the interface with the antibody. More generally, cross-reactivity is seen to require a stereochemically permissive environment for the variant antigen residues at the antibody-antigen interface.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Muramidase/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Galinhas , Coturnix , Reações Cruzadas , Cristalização , Feminino , Modelos Moleculares , Muramidase/imunologia
19.
Proteins ; 15(2): 209-12, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7680133

RESUMO

The complex formed between the Fab fragment of a murine monoclonal antihen egg lysozyme antibody F9.13.7 and the heterologous antigen Guinea-fowl egg lysozyme has been crystallized by the hanging drop technique. The crystals, which diffract X-rays to 3 A resolution, belong to the monoclinic space group P2(1), with a = 83.7 A, b = 195.5 A, c = 50.2 A, beta = 108.5 degrees and have two molecules of the complex in the asymmetric unit. The three-dimensional structure has been determined from a preliminary data set to 4 A using molecular replacement techniques. The lysozyme-Fab complexes are arranged with their long molecular axes approximately parallel to the crystallographic unique axis. Fab F9.13.7 binds an antigenic determinant that partially overlaps the epitope recognized by antilysozyme antibody HyHEL10.


Assuntos
Complexo Antígeno-Anticorpo/química , Muramidase/imunologia , Animais , Anticorpos Monoclonais/química , Aves , Galinhas , Cristalização , Epitopos/química , Feminino , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Muramidase/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA