Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 341(6143): 260-3, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23869013

RESUMO

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

2.
Science ; 341(6143): 263-6, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23869014

RESUMO

Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); carbon monoxide, < 1.0 × 10(-3); and (40)Ar/(36)Ar, 1.9(±0.3) × 10(3). The (40)Ar/N2 ratio is 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The (40)Ar/(36)Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ(13)C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

3.
Geophys Res Lett ; 40(21): 5605-5609, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821261

RESUMO

[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36Ar/38Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that "Mars" meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85-95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase.

4.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170292

RESUMO

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Assuntos
Isótopos de Carbono/análise , Deutério/análise , Isótopos/análise , Meteoroides , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Hidrogênio/análise , Neônio/análise , Gases Nobres/análise , Astronave
5.
Proc Natl Acad Sci U S A ; 102(5): 1306-11, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15671168

RESUMO

Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are approximately 5 x 10(-6). Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > or = 1.6 x 10(-4) at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189-L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475-1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051-1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes.


Assuntos
Cloro/análise , Meteoroides , China , Meia-Vida , Radioisótopos/análise , Sódio/análise , Enxofre/análise , Termodinâmica
6.
Science ; 304(5674): 1116-7, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15155936
7.
Science ; 295(5557): 1051-4, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11834830

RESUMO

Carbonaceous chondrite condensate olivine grains from two distinct petrographic settings, calcium-aluminum-rich inclusion (CAI) accretionary rims and amoeboid olivine aggregates (AOAs), are oxygen-16 (16O) enriched at the level previously observed inside CAIs. This requires that the gas in the nebular region where these grains condensed was 16O-rich. This contrasts with an 16O-poor gas present during the formation of chondrules, suggesting that CAIs and AOAs formed in a spatially restricted region of the solar nebula containing 16O-rich gas. The 16O-rich gas composition may have resulted either from mass-independent isotopic chemistry or from evaporation of regions with enhanced dust/gas ratios, possibly in an X-wind environment near the young Sun.


Assuntos
Meteoroides , Oxigênio/análise , Sistema Solar , Alumínio/análise , Cálcio/análise , Poeira Cósmica , Evolução Química , Gases , Compostos de Ferro , Compostos de Magnésio , Minerais/análise , Isótopos de Oxigênio/análise , Silicatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...