Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Nucl Magn Reson Spectrosc ; 138-139: 70-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38065669

RESUMO

Over the last two decades magic angle spinning dynamic nuclear polarization (MAS DNP) has revolutionized NMR for materials characterization, tackling its main limitation of intrinsically low sensitivity. Progress in theoretical understanding, instrumentation, and sample formulation expanded the range of materials applications and research questions that can benefit from MAS DNP. Currently the most common approach for hyperpolarization under MAS consists in impregnating the sample of interest with a solution containing nitroxide radicals, which upon microwave irradiation serve as exogenous polarizing agents. On the other hand, in metal ion based (MI)-DNP, inorganic materials are doped with paramagnetic metal centres, which then can be used as endogenous polarizing agents. In this work we give an overview of the electron paramagnetic resonance (EPR) concepts required to characterize the metal ions and discuss the expected changes in the NMR response due to the presence of paramagnetic species. We highlight which properties of the electron spins are beneficial for applications as polarizing agents in DNP and how to recognize them, both from the EPR and NMR data. A theoretical description of the main DNP mechanisms is given, employing a quantum mechanical formalism, and these concepts are used to explain the spin dynamics observed in the DNP experiment. In addition, we highlight the main differences between MI-DNP and the more common approaches in MAS DNP, which use organic radicals as exogenous polarizing source. Finally, we review some applications of metal ions as polarizing agents in general and then focus particularly on research questions in materials science that can benefit from MI-DNP.

2.
Chem Sci ; 15(1): 336-348, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131097

RESUMO

Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.

3.
J Phys Chem C Nanomater Interfaces ; 127(9): 4759-4772, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36925559

RESUMO

In dynamic nuclear polarization nuclear magnetic resonance (DNP-NMR) experiments, the large Boltzmann polarization of unpaired electrons is transferred to surrounding nuclei, leading to a significant increase in the sensitivity of the NMR signal. In order to obtain large polarization gains in the bulk of inorganic samples, paramagnetic metal ions are introduced as minor dopants acting as polarizing agents. While this approach has been shown to be very efficient in crystalline inorganic oxides, significantly lower enhancements have been reported when applying this approach to oxide glasses. In order to rationalize the origin of the difference in the efficiency of DNP in amorphous and crystalline inorganic matrices, we performed a detailed comparison in terms of their magnetic resonance properties. To diminish differences in the DNP performance arising from distinct nuclear interactions, glass and crystal systems of similar compositions were chosen, Li2OCaO·2SiO2 and Li2CaSiO4, respectively. Using Gd(III) as polarizing agent, DNP provided signal enhancements in the range of 100 for the crystalline sample, while only up to around factor 5 in the glass, for both 6Li and 29Si nuclei. We find that the drop in enhancement in glasses can be attributed to three main factors: shorter nuclear and electron relaxation times as well as the dielectric properties of glass and crystal. The amorphous nature of the glass sample is responsible for a high dielectric loss, leading to efficient microwave absorption and consequently lower effective microwave power and an increase in sample temperature which leads to further reduction of the electron relaxation time. These results help rationalize the observed sensitivity enhancements and provide guidance in identifying materials that could benefit from the DNP approach.

4.
J Am Chem Soc ; 144(22): 9836-9844, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635564

RESUMO

Lithium metal anodes offer a huge leap in the energy density of batteries, yet their implementation is limited by solid electrolyte interphase (SEI) formation and dendrite deposition. A key challenge in developing electrolytes leading to the SEI with beneficial properties is the lack of experimental approaches for directly probing the ionic permeability of the SEI. Here, we introduce lithium chemical exchange saturation transfer (Li-CEST) as an efficient nuclear magnetic resonance (NMR) approach for detecting the otherwise invisible process of Li exchange across the metal-SEI interface. In Li-CEST, the properties of the undetectable SEI are encoded in the NMR signal of the metal resonance through their exchange process. We benefit from the high surface area of lithium dendrites and are able, for the first time, to detect exchange across solid phases through CEST. Analytical Bloch-McConnell models allow us to compare the SEI permeability formed in different electrolytes, making the presented Li-CEST approach a powerful tool for designing electrolytes for metal-based batteries.


Assuntos
Eletrólitos , Lítio , Fenômenos Químicos , Eletrodos , Íons , Lítio/química
5.
J Magn Reson ; 336: 107143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085928

RESUMO

The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.


Assuntos
Elétrons , Compostos Férricos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Temperatura
6.
Solid State Nucl Magn Reson ; 117: 101763, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890977

RESUMO

The increasing need for portable and large-scale energy storage systems requires development of new, long lasting and highly efficient battery systems. Solid state NMR spectroscopy has emerged as an excellent method for characterizing battery materials. Yet, it is limited when it comes to probing thin interfacial layers which play a central role in the performance and lifetime of battery cells. Here we review how Dynamic Nuclear Polarization (DNP) can lift the sensitivity limitation and enable detection of the electrode-electrolyte interface, as well as the bulk of some electrode and electrolyte systems. We describe the current challenges from the point of view of materials development; considering how the unique electronic, magnetic and chemical properties differentiate battery materials from other applications of DNP in materials science. We review the current applications of exogenous and endogenous DNP from radicals, conduction electrons and paramagnetic metal ions. Finally, we provide our perspective on the opportunities and directions where battery materials can benefit from current DNP methodologies as well as project on future developments that will enable NMR investigation of battery materials with sensitivity and selectivity under ambient conditions.


Assuntos
Fontes de Energia Elétrica , Elétrons , Espectroscopia de Ressonância Magnética/métodos
7.
Nano Lett ; 21(23): 9916-9921, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813333

RESUMO

Colloidal inorganic nanofluorides have aroused great interest for various applications with their development greatly accelerated thanks to advanced synthetic approaches. Nevertheless, understanding their colloidal evolution and the factors that affect their dispersion could improve the ability to rationally design them. Here, using a multimodal in situ approach that combines DLS, NMR, and cryogenic-TEM, we elucidate the formation dynamics of nanofluorides in water through a transient aggregative phase. Specifically, we demonstrate that ligand-cation interactions mediate a transient aggregation of as-formed CaF2 nanocrystals (NCs) which governs the kinetics of the colloids' evolution. These observations shed light on key stages through which CaF2 NCs are dispersed in water, highlighting fundamental aspects of nanofluorides formation mechanisms. Our findings emphasize the roles of ligands in NCs' synthesis beyond their function as surfactants, including their ability to mediate colloidal evolution by complexing cationic precursors, and should be considered in the design of other types of NCs.


Assuntos
Fluoretos , Nanopartículas , Cátions , Coloides/química , Ligantes , Nanopartículas/química
8.
J Am Chem Soc ; 143(12): 4694-4704, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33751895

RESUMO

Degradation processes at the cathode-electrolyte interface are a major limitation in the development of high-energy lithium-ion rechargeable batteries. Deposition of protective thin coating layers on the surface of high-energy cathodes is a promising approach to control interfacial reactions. However, rational design of effective protection layers is limited by the scarcity of analytical tools that can probe thin, disordered, and heterogeneous phases. Here we propose a new structural approach based on solid-state nuclear magnetic resonance spectroscopy coupled with dynamic nuclear polarization (DNP) for characterizing thin coating layers. We demonstrate the approach on an efficient alkylated LixSiyOz coating layer. By utilizing different sources for DNP, exogenous from nitroxide biradicals and endogenous from paramagnetic metal ion dopants, we reveal the outer and inner surface layers of the deposited artificial interphase and construct a structural model for the coating. In addition, lithium isotope exchange experiments provide direct evidence for the function of the surface layer, shedding light on its role in the enhanced rate performance of coated cathodes. The presented methodology and results advance us in identifying the key properties of effective coatings and may enable rational design of protective and ion-conducting surface layers.

9.
J Phys Chem Lett ; 12(11): 2964-2969, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33730494

RESUMO

Comprehending the oxygen vacancy distribution in oxide ion conductors requires structural insights over various length scales: from the local coordination preferences to the possible formation of agglomerates comprising a large number of vacancies. In Y-doped ceria, 89Y NMR enables differentiation of yttrium sites by quantification of the oxygen vacancies in their first coordination sphere. Because of the extremely low sensitivity of 89Y, longer-range information was so far not available from NMR. Herein, we utilize metal ion-based dynamic nuclear polarization, where polarization from Gd(III) dopants provides large sensitivity enhancements homogeneously throughout the bulk of the sample. This enables following 89Y-89Y homonuclear dipolar correlations and probing the local distribution of yttrium sites, which show no evidence of the formation of oxygen vacancy rich regions. The presented approach can provide valuable structural insights for designing oxide ion conductors.

10.
Nat Commun ; 12(1): 229, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431908

RESUMO

Understanding inorganic nanocrystal (NC) growth dynamic pathways under their native fabrication environment remains a central goal of science, as it is crucial for rationalizing novel nanoformulations with desired architectures and functionalities. We here present an in-situ method for quantifying, in real time, NCs' size evolution at sub-nm resolution, their concentration, and reactants consumption rate for studying NC growth mechanisms. Analyzing sequential high-resolution liquid-state 19F-NMR spectra obtained in-situ and validating by ex-situ cryoTEM, we explore the growth evolution of fluoride-based NCs (CaF2 and SrF2) in water, without disturbing the synthesis conditions. We find that the same nanomaterial (CaF2) can grow by either a particle-coalescence or classical-growth mechanism, as regulated by the capping ligand, resulting in different crystallographic properties and functional features of the fabricated NC. The ability to reveal, in real time, mechanistic pathways at which NCs grow open unique opportunities for tunning the properties of functional materials.

11.
J Phys Chem Lett ; 11(14): 5439-5445, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32551646

RESUMO

Dynamic nuclear polarization (DNP) significantly enhances the sensitivity of nuclear magnetic resonance (NMR), increasing its applications and the quality of NMR spectroscopy as a characterization tool for materials. Efficient spin diffusion among the nuclear spins is considered to be essential for spreading the hyperpolarization throughout the sample, enabling large DNP enhancements. This scenario mostly limits the polarization enhancement of low-sensitivity nuclei in inorganic materials to the surface sites when the polarization source is an exogenous radical. In metal-ion-based DNP, the polarization agents are distributed in the bulk sample and act as a source of both relaxation and polarization enhancement. We have found that as long as the polarization agent is the main source of relaxation, the enhancement does not depend on the distance between the nucleus and dopant. As a consequence, the requirement of efficient spin diffusion is lifted, and the entire sample can be directly polarized. We exploit this finding to measure high-quality NMR spectra of 17O in the electrode material Li4Ti5O12 doped with Fe(III) despite its low abundance and long relaxation time.


Assuntos
Ferro/química , Óxidos/química , Titânio/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Oxigênio/química
12.
J Phys Chem C Nanomater Interfaces ; 124(13): 7082-7090, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32273937

RESUMO

Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid-state NMR spectroscopy is a powerful approach for gaining chemical and structural insights at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here, we employ for the first time metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material Li4Ti5O12. In addition for being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect that the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.

13.
Solid State Nucl Magn Reson ; 99: 7-14, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30826711

RESUMO

In recent years dynamic nuclear polarization (DNP) has greatly expanded the range of materials systems that can be studied by solid state NMR spectroscopy. To date, the majority of systems studied by DNP were insulating materials including organic and inorganic solids. However, many technologically-relevant materials used in energy conversion and storage systems are electrically conductive to some extent or are employed as composites containing conductive additives. Such materials introduce challenges in their study by DNP-NMR which include microwave absorption and sample heating that were not thoroughly investigated so far. Here we examine several commercial carbon allotropes, commonly employed as electrodes or conductive additives, and consider their effect on the extent of solvent polarization achieved in DNP from nitroxide biradicals. We then address the effect of sample conductivity systematically by studying a series of carbons with increasing electrical conductivity prepared via glucose carbonization. THz spectroscopy measurements are used to determine the extent of µw absorption. Our results show that while the DNP performance significantly drops in samples containing the highly conductive carbons, sufficient signal enhancement can still be achieved with some compromise on conductivity. Furthermore, we show that the deleterious effect of conductive additives on DNP enhancements can be partially overcome through pulse-DNP experiments.

14.
J Am Chem Soc ; 141(1): 451-462, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525555

RESUMO

In recent years magic angle spinning-dynamic nuclear polarization (MAS-DNP) has developed as an excellent approach for boosting the sensitivity of solid-state NMR (ssNMR) spectroscopy, thereby enabling the characterization of challenging systems in biology and chemistry. Most commonly, MAS-DNP is based on the use of nitroxide biradicals as polarizing agents. In materials science, since the use of nitroxides often limits the signal enhancement to the materials' surface and subsurface layers, there is need for hyperpolarization approaches which will provide sensitivity in the bulk of micron sized particles. Recently, an alternative in the form of paramagnetic metal ions has emerged. Here we demonstrate the remarkable efficacy of Mn(II) dopants, used as endogenous polarization agents for MAS-DNP, in enabling the detection of 17O at a natural abundance of only 0.038%. Distinct oxygen sites are identified in the bulk of micron-sized crystals, including battery anode materials Li4Ti5O12 (LTO) and Li2ZnTi3O8, as well as the phosphor materials NaCaPO4 and MgAl2O4, all doped with Mn(II) ions. Density functional theory calculations are used to assign the resonances to specific oxygen environments in these phases. Depending on the Mn(II) dopant concentration, we obtain significant signal enhancement factors, 142 and 24, for 6Li and 7Li nuclei in LTO, respectively. We furthermore follow the changes in the 6,7Li LTO resonances and determine their enhancement factors as a function of Mn(II) concentration. The results presented show that MAS-DNP from paramagnetic metal ion dopants provides an efficient approach for probing informative nuclei such as 17O, despite their low gyromagnetic ratio and negligible abundance, without isotope enrichment.

15.
ACS Appl Mater Interfaces ; 10(35): 29622-29629, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30094988

RESUMO

Out of the many challenges in the realization of lithium-O2 batteries (LOB), the major is to deal with the instability of the electrolyte and the cathode interface under the stringent environment of both oxygen reduction and evolution reactions. Lithium nitrate was recently proposed as a promising salt for LOB because of its capability to stabilize the lithium anode by the formation of a solid electrolyte interphase, its low level of dissociation in aprotic solvents, and its catalytic effect toward oxygen evolution reaction (OER) in rechargeable LOB. Nevertheless, a deeper understanding of the influence of nitrate on the stability and electrochemical response of the cathode in LOB is yet to be realized. Additionally, it is well accepted that carbon instability toward oxidation is a major reason for early failure of LOB cells; therefore, it is essential to investigate the effect of electrolyte components on this side of the battery. In the present work, we show that nitrate leads to interfacial changes, which result in the formation of a surface protection domain on the carbon scaffold of LOB cathode, which helps in suppressing the oxidative damage of the carbon. This effect is conjugated with an additional electrocatalytic effect of the nitrate ion on the OER. Using in operando online electrochemical mass spectroscopy, we herein deconvolute these two positive effects and show how they are dependent on nitrate concentration and the potential of cell operation. We show that a low amount of nitrate can exhibit the catalytic behavior; however, in order to harness its ability to suppress the oxidative damage and passivate the carbon surface, an excess of LiNO3 is required.

16.
Adv Mater ; 30(41): e1706496, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29889328

RESUMO

Rechargeable battery cells are composed of two electrodes separated by an ion-conducting electrolyte. While the energy density of the cell is mostly determined by the redox potential of the electrodes and amount of charge they can store, the processes at the electrode-electrolyte interface govern the battery's lifetime and performance. Viable battery cells rely on unimpeded ion transport across this interface, which depends on its composition and structure. These properties are challenging to determine as interfacial phases are thin, disordered, heterogeneous, and can be very reactive. The recent developments and applications of solid state NMR spectroscopy in the study of interfacial phenomena in rechargeable batteries based on lithium and sodium chemistries are reviewed. The different NMR interactions are surveyed and how these are used to shed light on the chemical composition and architecture of interfacial phases as well as directly probe ion transport across them is described. By combining new methods in solid state NMR spectroscopy with other analytical tools, a holistic description of the electrode-electrolyte interface can be obtained. This will enable the design of improved interfaces for developing battery cells with high energy, high power, and longer lifetime.

17.
Chemphyschem ; 19(17): 2139-2142, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29770999

RESUMO

Dynamic nuclear polarization (DNP), a technique in which the high electron spin polarization is transferred to surrounding nuclei via microwave irradiation, equips solid-state NMR spectroscopy with unprecedented sensitivity. The most commonly used polarization agents for DNP are nitroxide radicals. However, their applicability to inorganic materials is mostly limited to surface detection. Paramagnetic metal ions were recently introduced as alternatives for nitroxides. Doping inorganic solids with paramagnetic ions can be used to tune material properties and introduces endogenous DNP agents that can potentially provide sensitivity in the particles' bulk and surface. Here we demonstrate the approach by doping Li4 Ti5 O12 (LTO), an anode material for lithium ion batteries, with paramagnetic ions. By incorporating Gd(III) and Mn(II) in LTO we gain up to 14 fold increase in signal intensity in static 7 Li DNP-NMR experiments. These results suggest that doping with paramagnetic ions provides an efficient route for sensitivity enhancement in the bulk of micron size particles.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31093600

RESUMO

Doped metal oxide materials are commonly used for applications in energy storage and conversion, such as batteries and solid oxide fuel cells. The knowledge of the electronic properties of dopants and their local environment is essential for understanding the effects of doping on the electrochemical properties. Using a combination of X-ray absorption near-edge structure spectroscopy (XANES) experiment and theoretical modeling we demonstrate that in the dilute (1 at. %) Mn-doped lithium titanate (Li4/3Ti5/3O4, or LTO) the dopant Mn2+ ions reside on tetrahedral (8a) sites. First-principles Mn K-edge XANES calculations revealed the spectral signature of the tetrahedrally coordinated Mn as a sharp peak in the middle of the absorption edge rise, caused by the 1s → 4p transition, and it is important to include the effective electron-core hole Coulomb interaction in order to calculate the intenisty of this peak accurately. This dopant location explains the impedance of Li migration through the LTO lattice during the charge-discharge process, and, as a result - the observed remarkable 20% decrease in electrochemical rate performance of the 1% Mn-doped LTO compared to the pristine LTO.

19.
J Chem Phys ; 146(10): 104202, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298092

RESUMO

Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

20.
J Phys Chem Lett ; 8(5): 1078-1085, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28195488

RESUMO

Forming a stable solid electrolyte interphase (SEI) is critical for rechargeable batteries' performance and lifetime. Understanding its formation requires analytical techniques that provide molecular-level insight. Here, dynamic nuclear polarization (DNP) is utilized for the first time to enhance the sensitivity of solid-state NMR (ssNMR) spectroscopy to the SEI. The approach is demonstrated on reduced graphene oxide (rGO) cycled in Li-ion cells in natural abundance and 13C-enriched electrolyte solvents. Our results indicate that DNP enhances the signal of outer SEI layers, enabling detection of natural abundance 13C spectra from this component of the SEI on reasonable time frames. Furthermore, 13C-enriched electrolyte measurements at 100 K provide ample sensitivity without DNP due to the vast amount of SEI filling the rGO pores, thereby allowing differentiation of the inner and outer SEI layer composition. Developing this approach further will benefit the study of many electrode materials, equipping ssNMR with the necessary sensitivity to probe the SEI efficiently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...