Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166786, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302426

RESUMO

Mutations in the catalytic domain of mitochondrial DNA polymerase γ (POLγ) cause a broad spectrum of clinical conditions. POLγ mutations impair mitochondrial DNA replication, thereby causing deletions and/or depletion of mitochondrial DNA, which in turn impair biogenesis of the oxidative phosphorylation system. We here identify a patient with a homozygous p.F907I mutation in POLγ, manifesting a severe clinical phenotype with developmental arrest and rapid loss of skills from 18 months of age. Magnetic resonance imaging of the brain revealed extensive white matter abnormalities, Southern blot of muscle mtDNA demonstrated depletion of mtDNA and the patient deceased at 23 months of age. Interestingly, the p.F907I mutation does not affect POLγ activity on single-stranded DNA or its proofreading activity. Instead, the mutation affects unwinding of parental double-stranded DNA at the replication fork, impairing the ability of the POLγ to support leading-strand DNA synthesis with the TWINKLE helicase. Our results thus reveal a novel pathogenic mechanism for POLγ-related diseases.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA Polimerase gama/genética , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Humanos , Lactente
2.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
3.
Hum Mutat ; 43(6): 708-716, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35192731

RESUMO

The amount of data available from genomic medicine has revolutionized the approach to identify the determinants underlying many rare diseases. The task of confirming a genotype-phenotype causality for a patient affected with a rare genetic disease is often challenging. In this context, the establishment of the Matchmaker Exchange (MME) network has assumed a pivotal role in bridging heterogeneous patient information stored on different medical and research servers. MME has made it possible to solve rare disease cases by "matching" the genotypic and phenotypic characteristics of a patient of interest with patient data available at other clinical facilities participating in the network. Here, we present PatientMatcher (https://github.com/Clinical-Genomics/patientMatcher), an open-source Python and MongoDB-based software solution developed by Clinical Genomics facility at the Science for Life Laboratory in Stockholm. PatientMatcher is designed as a standalone MME server, but can easily communicate via REST API with external applications managing genetic analyses and patient data. The MME node is being implemented in clinical routine in collaboration with the Genomic Medicine Center Karolinska at the Karolinska University Hospital. PatientMatcher is written to implement the MME API and provides several customizable settings, including a custom-fit similarity score algorithm and adjustable matching results notifications.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Disseminação de Informação/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , Software
4.
Front Neurol ; 12: 652590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841319

RESUMO

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease causing severe bilateral visual loss, typically in young adults. The disorder is commonly caused by one of three primary point mutations in mitochondrial DNA, but a number of other rare mutations causing or associated with the clinical syndrome of LHON have been reported. The mutations in LHON are almost exclusively located in genes encoding subunits of complex I in the mitochondrial respiratory chain. Here we report two patients, a mother and her son, with the typical LHON phenotype. Genetic investigations for the three common mutations were negative, instead we found a new and previously unreported mutation in mitochondrial DNA. This homoplasmic mutation, m.13345G>A, is located in the MT-ND5 gene, encoding a core subunit in complex I in the mitochondrial respiratory chain. Investigation of the patients mitochondrial respiratory chain in muscle found a mild defect in the combined activity of complex I+III. In the literature six other mutations in the MT-ND5 gene have been associated with LHON and by this report a new putative mutation in the MT-ND5 can be added.

5.
Neurol Genet ; 7(2): e566, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732874

RESUMO

OBJECTIVE: To investigate the pathogenicity of a novel MT-ND3 mutation identified in a patient with adult-onset sensorimotor axonal polyneuropathy and report the clinical, morphologic, and biochemical findings. METHODS: Clinical assessments and morphologic and biochemical investigations of skeletal muscle and cultured myoblasts from the patient were performed. Whole-genome sequencing (WGS) of DNA from skeletal muscle and Sanger sequencing of mitochondrial DNA (mtDNA) from both skeletal muscle and cultured myoblasts were performed. Heteroplasmic levels of mutated mtDNA in different tissues were quantified by last-cycle hot PCR. RESULTS: Muscle showed ragged red fibers, paracrystalline inclusions, a significant reduction in complex I (CI) respiratory chain (RC) activity, and decreased adenosine triphosphate (ATP) production for all substrates used by CI. Sanger sequencing of DNA from skeletal muscle detected a unique previously unreported heteroplasmic mutation in mtDNA encoded MT-ND3, coding for a subunit in CI. WGS confirmed the mtDNA mutation but did not detect any other mutation explaining the disease. Cultured myoblasts, however, did not carry the mutation, and RC activity measurements in myoblasts were normal. CONCLUSIONS: We report a case with adult-onset sensorimotor axonal polyneuropathy caused by a novel mtDNA mutation in MT-ND3. Loss of heteroplasmy in blood, cultured fibroblasts and myoblasts from the patient, and normal measurement of RC activity of the myoblasts support pathogenicity of the mutation. These findings highlight the importance of mitochondrial investigations in patients presenting with seemingly idiopathic polyneuropathy, especially if muscle also is affected.

6.
Genome Med ; 13(1): 40, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33726816

RESUMO

BACKGROUND: We report the findings from 4437 individuals (3219 patients and 1218 relatives) who have been analyzed by whole genome sequencing (WGS) at the Genomic Medicine Center Karolinska-Rare Diseases (GMCK-RD) since mid-2015. GMCK-RD represents a long-term collaborative initiative between Karolinska University Hospital and Science for Life Laboratory to establish advanced, genomics-based diagnostics in the Stockholm healthcare setting. METHODS: Our analysis covers detection and interpretation of SNVs, INDELs, uniparental disomy, CNVs, balanced structural variants, and short tandem repeat expansions. Visualization of results for clinical interpretation is carried out in Scout-a custom-developed decision support system. Results from both singleton (84%) and trio/family (16%) analyses are reported. Variant interpretation is done by 15 expert teams at the hospital involving staff from three clinics. For patients with complex phenotypes, data is shared between the teams. RESULTS: Overall, 40% of the patients received a molecular diagnosis ranging from 19 to 54% for specific disease groups. There was heterogeneity regarding causative genes (n = 754) with some of the most common ones being COL2A1 (n = 12; skeletal dysplasia), SCN1A (n = 8; epilepsy), and TNFRSF13B (n = 4; inborn errors of immunity). Some causative variants were recurrent, including previously known founder mutations, some novel mutations, and recurrent de novo mutations. Overall, GMCK-RD has resulted in a large number of patients receiving specific molecular diagnoses. Furthermore, negative cases have been included in research studies that have resulted in the discovery of 17 published, novel disease-causing genes. To facilitate the discovery of new disease genes, GMCK-RD has joined international data sharing initiatives, including ClinVar, UDNI, Beacon, and MatchMaker Exchange. CONCLUSIONS: Clinical WGS at GMCK-RD has provided molecular diagnoses to over 1200 individuals with a broad range of rare diseases. Consolidation and spread of this clinical-academic partnership will enable large-scale national collaboration.


Assuntos
Atenção à Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Heterogeneidade Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Disseminação de Informação , Padrões de Herança/genética , Repetições de Microssatélites/genética , Mutação/genética , Suécia , Dissomia Uniparental/genética
7.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502047

RESUMO

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Assuntos
Acidose Láctica , Cardiomiopatia Hipertrófica , Doenças Mitocondriais , NADH NADPH Oxirredutases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/genética , Mutação
8.
J Pediatr ; 228: 240-251.e2, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827528

RESUMO

OBJECTIVES: To evaluate the clinical symptoms and biochemical findings and establish the genetic etiology in a cohort of pediatric patients with combined deficiencies of the mitochondrial respiratory chain complexes. STUDY DESIGN: Clinical and biochemical data were collected from 55 children. All patients were subjected to sequence analysis of the entire mitochondrial genome, except when the causative mutations had been identified based on the clinical picture. Whole exome sequencing/whole genome sequencing (WES/WGS) was performed in 32 patients. RESULTS: Onset of disease was generally early in life (median age, 6 weeks). The most common symptoms were muscle weakness, hypotonia, and developmental delay/intellectual disability. Nonneurologic symptoms were frequent. Disease causing mutations were found in 20 different nuclear genes, and 7 patients had mutations in mitochondrial DNA. Causative variants were found in 18 of the 32 patients subjected to WES/WGS. Interestingly, many patients had low levels of coenzyme Q10 in muscle, irrespective of genetic cause. CONCLUSIONS: Children with combined enzyme defects display a diversity of clinical symptoms with varying age of presentation. We established the genetic diagnosis in 35 of the 55 patients (64%). The high diagnostic yield was achieved by the introduction of massive parallel sequencing, which also revealed novel genes and enabled elucidation of new disease mechanisms.


Assuntos
DNA Mitocondrial/genética , Doenças Metabólicas/genética , Doenças Mitocondriais/genética , Mutação , Ubiquinona/análogos & derivados , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Humanos , Lactente , Recém-Nascido , Doenças Metabólicas/enzimologia , Doenças Mitocondriais/enzimologia , Ubiquinona/sangue , Sequenciamento do Exoma , Adulto Jovem
9.
Neurol Genet ; 6(4): e478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32754646

RESUMO

OBJECTIVE: To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). METHODS: After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. RESULTS: The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. CONCLUSIONS: Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.

10.
Stem Cell Reports ; 12(4): 696-711, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30827875

RESUMO

Neurodegenerative disorders are an increasingly common and irreversible burden on society, often affecting the aging population, but their etiology and disease mechanisms are poorly understood. Studying monogenic neurodegenerative diseases with known genetic cause provides an opportunity to understand cellular mechanisms also affected in more complex disorders. We recently reported that loss-of-function mutations in the autophagy adaptor protein SQSTM1/p62 lead to a slowly progressive neurodegenerative disease presenting in childhood. To further elucidate the neuronal involvement, we studied the cellular consequences of loss of p62 in a neuroepithelial stem cell (NESC) model and differentiated neurons derived from reprogrammed p62 patient cells or by CRISPR/Cas9-directed gene editing in NESCs. Transcriptomic and proteomic analyses suggest that p62 is essential for neuronal differentiation by controlling the metabolic shift from aerobic glycolysis to oxidative phosphorylation required for neuronal maturation. This shift is blocked by the failure to sufficiently downregulate lactate dehydrogenase expression due to the loss of p62, possibly through impaired Hif-1α downregulation and increased sensitivity to oxidative stress. The findings imply an important role for p62 in neuronal energy metabolism and particularly in the regulation of the shift between glycolysis and oxidative phosphorylation required for normal neurodifferentiation.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Metabolismo Energético/genética , Proteína Sequestossoma-1/genética , Perfilação da Expressão Gênica , Glicólise , Humanos , Mitofagia , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo
11.
Hum Mol Genet ; 26(13): 2515-2525, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430993

RESUMO

Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Adulto , Sequência de Aminoácidos , Animais , DNA Polimerase gama , Replicação do DNA/genética , DNA Mitocondrial/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Mitocôndrias/genética , Mutação/genética , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Linhagem , Fenótipo
12.
Orphanet J Rare Dis ; 12(1): 73, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427446

RESUMO

BACKGROUND: Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide. RESULTS: A case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient's platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency. CONCLUSIONS: We describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.


Assuntos
Acidose Láctica/genética , Colestase/genética , Retardo do Crescimento Fetal/genética , Hemossiderose/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/congênito , Aminoacidúrias Renais/genética , Animais , Transporte de Elétrons/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Mutação/genética
13.
Eur J Paediatr Neurol ; 20(3): 457-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26975589

RESUMO

UNLABELLED: We report two siblings of Swedish origin with infantile Biotin and Thiamine Responsive Basal Ganglia Disease (BTRBG). CASE REPORT: Initial symptoms were in both cases lethargia, with reduced contact and poor feeding from the age of 5 weeks. Magnetic resonance imaging showed altered signal in the basal ganglia, along with grey and white matter abnormalities. The diagnosis BTRBG was not recognized in the first sibling who died at the age of 8 weeks. The second sibling was started on biotin and thiamine immediately upon development of symptoms, leading to clinical improvement and partial reversion of the magnetic resonance imaging findings. Genetic analysis of the SLC19A3 gene identified two mutations, c.74dupT and c.1403delA, carried in compound heterozygous form in both boys, each inherited from one parent. COMMENTS: The first mutation has previously been described in children with BTRBG, and the second mutation is novel. Although the clinical picture in BTRGB is very severe it is also rather unspecific and the diagnosis may be missed. CONCLUSION: This report highlights the importance of considering biotin and thiamine treatment also in a European infant born to non-consanguineous parents, who presents with symptoms of acute/subacute encephalopathy.


Assuntos
Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/tratamento farmacológico , Biotina/uso terapêutico , Proteínas de Membrana Transportadoras/genética , Tiamina/uso terapêutico , Complexo Vitamínico B/uso terapêutico , Doenças dos Gânglios da Base/genética , Diagnóstico Diferencial , Heterozigoto , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Irmãos , População Branca/genética
14.
Am J Hum Genet ; 97(5): 761-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522469

RESUMO

S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/genética , Mutação/genética , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Pré-Escolar , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Debilidade Muscular/patologia , Linhagem , Prognóstico , Estabilidade de RNA , Homologia de Sequência de Aminoácidos , Ácido Tióctico/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
15.
Hum Mol Genet ; 24(23): 6580-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26374844

RESUMO

Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/uso terapêutico , Mitocôndrias/metabolismo , Miopatias Mitocondriais/tratamento farmacológico , Músculo Esquelético/metabolismo , Animais , Cálcio/metabolismo , Peptidil-Prolil Isomerase F , Ciclofilinas/efeitos dos fármacos , Ciclofilinas/genética , DNA Mitocondrial , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Mutação
16.
Nat Commun ; 6: 8038, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26333769

RESUMO

The potassium-chloride co-transporter KCC2, encoded by SLC12A5, plays a fundamental role in fast synaptic inhibition by maintaining a hyperpolarizing gradient for chloride ions. KCC2 dysfunction has been implicated in human epilepsy, but to date, no monogenic KCC2-related epilepsy disorders have been described. Here we show recessive loss-of-function SLC12A5 mutations in patients with a severe infantile-onset pharmacoresistant epilepsy syndrome, epilepsy of infancy with migrating focal seizures (EIMFS). Decreased KCC2 surface expression, reduced protein glycosylation and impaired chloride extrusion contribute to loss of KCC2 activity, thereby impairing normal synaptic inhibition and promoting neuronal excitability in this early-onset epileptic encephalopathy.


Assuntos
Cloretos/metabolismo , Epilepsias Parciais/genética , Inibição Neural/genética , Neurônios/metabolismo , Simportadores/genética , Animais , Criança , Pré-Escolar , Células HEK293 , Humanos , Immunoblotting , Lactente , Masculino , Mutação , Técnicas de Patch-Clamp , Linhagem , Análise de Sequência de DNA , Simportadores/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra , Cotransportadores de K e Cl-
17.
J Med Genet ; 52(11): 779-83, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26084283

RESUMO

BACKGROUND: Coenzyme Q is an essential mitochondrial electron carrier, redox cofactor and a potent antioxidant in the majority of cellular membranes. Coenzyme Q deficiency has been associated with a range of metabolic diseases, as well as with some drug treatments and ageing. METHODS: We used whole exome sequencing (WES) to investigate patients with inherited metabolic diseases and applied a novel ultra-pressure liquid chromatography-mass spectrometry approach to measure coenzyme Q in patient samples. RESULTS: We identified a homozygous missense mutation in the COQ7 gene in a patient with complex mitochondrial deficiency, resulting in severely reduced coenzyme Q levels We demonstrate that the coenzyme Q analogue 2,4-dihydroxybensoic acid (2,4DHB) was able to specifically bypass the COQ7 deficiency, increase cellular coenzyme Q levels and rescue the biochemical defect in patient fibroblasts. CONCLUSION: We report the first patient with primary coenzyme Q deficiency due to a homozygous COQ7 mutation and a potentially beneficial treatment using 2,4DHB.


Assuntos
Ataxia/genética , Hidroxibenzoatos/uso terapêutico , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação de Sentido Incorreto , Ubiquinona/deficiência , Sequência de Aminoácidos , Ataxia/diagnóstico , Ataxia/tratamento farmacológico , Criança , Pré-Escolar , Cromatografia Líquida , Análise Mutacional de DNA , Exoma , Homozigoto , Humanos , Recém-Nascido , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Dados de Sequência Molecular , Debilidade Muscular/diagnóstico , Debilidade Muscular/tratamento farmacológico , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Ubiquinona/genética
18.
BMC Genomics ; 15: 1090, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495354

RESUMO

BACKGROUND: Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. RESULTS: We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. CONCLUSIONS: We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are investigated and as clinical specialists take responsibility for translation of results. As follow-up in patients without any known IEM, filters can be lifted and the full genome investigated, after genetic counselling and informed consent.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Erros Inatos do Metabolismo/diagnóstico , Biologia Computacional , Bases de Dados Genéticas , Genoma Humano , Humanos , Erros Inatos do Metabolismo/genética , Piruvato Desidrogenase (Lipoamida)/genética , Análise de Sequência de DNA
19.
Am J Med Genet A ; 161A(6): 1284-90, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23613323

RESUMO

We report on an 8-year-old female patient with multiple malformations including bilateral cleft lip and palate, coloboma, and craniosynostosis. She presented with severe intellectual disability, seizures, and gastrointestinal dysfunction. Mitochondrial investigations in a muscle biopsy revealed reduced activity in complex I of the mitochondrial respiratory chain. Chromosome analysis and fluorescent in situ hybridization (FISH) studies showed an isodicentric marker chromosome 14 that was identified in all cells analyzed in peripheral blood lymphocytes and cultured fibroblasts. Parental chromosome studies were normal. To further characterize the marker chromosome and determine its origin, we performed array-based comparative genomic hybridization (CGH) and polymorphic marker analysis with quantitative fluorescent PCR (QF-PCR). The combined results from cytogenetic and array-CGH analyses showed tetrasomy 14p13q13.1 and results from the QF-PCR point to formation of the marker chromosome in the maternal meiosis. Isodicentric chromosomes involving partial 14q have previously been reported in four cases; however, this is the first patient with tetrasomy 14p13q13.1 in non-mosaic form surviving beyond infancy.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 14/genética , Tetrassomia/genética , Criança , Fenda Labial/genética , Coloboma/genética , Hibridização Genômica Comparativa , Craniossinostoses/genética , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Gastroenteropatias/genética , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/genética , Cariotipagem , Repetições de Microssatélites/genética , Doenças Mitocondriais/metabolismo , Modelos Genéticos , Músculo Esquelético/metabolismo , Convulsões/genética , Suécia
20.
Eur J Hum Genet ; 20(8): 897-904, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22378285

RESUMO

Although over 200 pathogenic mitochondrial DNA (mtDNA) mutations have been reported to date, determining the genetic aetiology of many cases of mitochondrial disease is still not straightforward. Here, we describe the investigations undertaken to uncover the underlying molecular defect(s) in two unrelated Caucasian patients with suspected mtDNA disease, who presented with similar symptoms of myopathy, deafness, neurodevelopmental delay, epilepsy, marked fatigue and, in one case, retinal degeneration. Histochemical and biochemical evidence of mitochondrial respiratory chain deficiency was observed in the patient muscle biopsies and both patients were discovered to harbour a novel heteroplasmic mitochondrial tRNA (mt-tRNA)(Ser(AGY)) (MTTS2) mutation (m.12264C>T and m.12261T>C, respectively). Clear segregation of the m.12261T>C mutation with the biochemical defect, as demonstrated by single-fibre radioactive RFLP, confirmed the pathogenicity of this novel variant in patient 2. However, unusually high levels of m.12264C>T mutation within both COX-positive (98.4 ± 1.5%) and COX-deficient (98.2 ± 2.1%) fibres in patient 1 necessitated further functional investigations to prove its pathogenicity. Northern blot analysis demonstrated the detrimental effect of the m.12264C>T mutation on mt-tRNA(Ser(AGY)) stability, ultimately resulting in decreased steady-state levels of fully assembled complexes I and IV, as shown by blue-native polyacrylamide gel electrophoresis. Our findings expand the spectrum of pathogenic mutations associated with the MTTS2 gene and highlight MTTS2 mutations as an important cause of retinal and syndromic auditory impairment.


Assuntos
Surdez/genética , Epilepsia/genética , Doenças Musculares/genética , Mutação , RNA de Transferência de Serina/genética , RNA/genética , Degeneração Retiniana/genética , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Sequência de Bases , Células Cultivadas , Criança , Pré-Escolar , Surdez/metabolismo , Transporte de Elétrons , Epilepsia/metabolismo , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Serina/metabolismo , Degeneração Retiniana/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...