Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 373, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042835

RESUMO

There is currently no quantifiable method to predict long-term clinical outcomes in patients presenting with a first episode of psychosis. A major barrier to developing useful markers for this is biological heterogeneity, where many different pathological mechanisms may underly the same set of symptoms in different individuals. Normative modelling has been used to quantify this heterogeneity in established psychotic disorders by identifying regions of the cortex which are thinner than expected based on a normative healthy population range. These brain atypicalities are measured at the individual level and therefore potentially useful in a clinical setting. However, it is still unclear whether alterations in individual brain structure can be detected at the time of the first psychotic episode, and whether they are associated with subsequent clinical outcomes. We applied normative modelling of cortical thickness to a sample of first-episode psychosis patients, with the aim of quantifying heterogeneity and to use any pattern of cortical atypicality to predict symptoms and response to antipsychotic medication at timepoints from baseline up to 95 weeks (median follow-ups = 4). T1-weighted brain magnetic resonance images from the GAP and OPTiMiSE samples were processed with Freesurfer V6.0.0 yielding 148 cortical thickness features. An existing normative model of cortical thickness (n = 37,126) was adapted to integrate data from each clinical site and account for effects of gender and site. Our test sample consisted of control participants (n = 149, mean age = 26, SD = 6.7) and patient data (n = 295, mean age = 26, SD = 6.7), this sample was used for estimating deviations from the normative model and subsequent statistical analysis. For each individual, the 148 cortical thickness features were mapped to centiles of the normative distribution and converted to z-scores reflecting the distance from the population mean. Individual cortical thickness metrics of +/- 2.6 standard deviations from the mean were considered extreme deviations from the norm. We found that no more than 6.4% of psychosis patients had extreme deviations in a single brain region (regional overlap) demonstrating a high degree of heterogeneity. Mann-Whitney U tests were run on z-scores for each region and significantly lower z-scores were observed in FEP patients in the frontal, temporal, parietal and occipital lobes. Finally, linear mixed-effects modelling showed that negative deviations in cortical thickness in parietal and temporal regions at baseline are related to more severe negative symptoms over the medium-term. This study shows that even at the early stage of symptom onset normative modelling provides a framework to identify individualised cortical markers which can be used for early personalised intervention and stratification.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Humanos , Adulto , Transtornos Psicóticos/tratamento farmacológico , Encéfalo/patologia , Antipsicóticos/uso terapêutico , Imageamento por Ressonância Magnética , Lobo Temporal/patologia
2.
Cereb Cortex ; 28(7): 2482-2494, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688293

RESUMO

Humans show a preference for using the right hand over the left for tasks and activities of everyday life. While experimental work in non-human primates has identified the neural systems responsible for reaching and grasping, the neural basis of lateralized motor behavior in humans remains elusive. The advent of diffusion imaging tractography for studying connectional anatomy in the living human brain provides the possibility of understanding the relationship between hemispheric asymmetry, hand preference, and manual specialization. In this study, diffusion tractography was used to demonstrate an interaction between hand preference and the asymmetry of frontoparietal tracts, specifically the dorsal branch of the superior longitudinal fasciculus, responsible for visuospatial integration and motor planning. This is in contrast to the corticospinal tract and the superior cerebellar peduncle, for which asymmetry was not related to hand preference. Asymmetry of the dorsal frontoparietal tract was also highly correlated with the degree of lateralization in tasks requiring visuospatial integration and fine motor control. These results suggest a common anatomical substrate for hand preference and lateralized manual specialization in frontoparietal tracts important for visuomotor processing.


Assuntos
Lobo Frontal/fisiologia , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Destreza Motora/fisiologia , Lobo Parietal/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pedúnculo Cerebelar Médio/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Interface Usuário-Computador , Adulto Jovem
3.
Neuroimage ; 146: 367-375, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639357

RESUMO

Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections.


Assuntos
Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA