Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Pathog ; 19(6): e1011462, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339136

RESUMO

Nematode parasites enter their definitive host at the developmentally arrested infectious larval stage (iL3), and the ligand-dependent nuclear receptor DAF-12 contributes to trigger their development to adulthood. Here, we characterized DAF-12 from the filarial nematodes Brugia malayi and Dirofilaria immitis and compared them with DAF-12 from the non-filarial nematodes Haemonchus contortus and Caenorhabditis elegans. Interestingly, Dim and BmaDAF-12 exhibit high sequence identity and share a striking higher sensitivity than Hco and CelDAF-12 to the natural ligands Δ4- and Δ7-dafachronic acids (DA). Moreover, sera from different mammalian species activated specifically Dim and BmaDAF-12 while the hormone-depleted sera failed to activate the filarial DAF-12. Accordingly, hormone-depleted serum delayed the commencement of development of D. immitis iL3 in vitro. Consistent with these observations, we show that spiking mouse charcoal stripped-serum with Δ4-DA at the concentration measured in normal mouse serum restores its capacity to activate DimDAF-12. This indicates that DA present in mammalian serum participate in filarial DAF-12 activation. Finally, analysis of publicly available RNA sequencing data from B. malayi showed that, at the time of infection, putative gene homologs of the DA synthesis pathways are coincidently downregulated. Altogether, our data suggest that filarial DAF-12 have evolved to specifically sense and survive in a host environment, which provides favorable conditions to quickly resume larval development. This work sheds new light on the regulation of filarial nematodes development while entering their definitive mammalian host and may open the route to novel therapies to treat filarial infections.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Helminto , Animais , Camundongos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Larva/metabolismo , Hormônios/metabolismo , Mamíferos , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Parasit Vectors ; 15(1): 482, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544229

RESUMO

BACKGROUND: Dirofilaria immitis causes dirofilariosis, a potentially fatal condition in canids. Dirofilaria infections can be prevented with a macrocyclic lactone (ML) prophylactic regimen. However, some D. immitis isolates have become resistant to MLs. Genetic changes on the P-glycoprotein 11 gene, encoding an ABCB transporter, have been linked to the ML-resistant phenotypes and have been proposed as markers of drug resistance. However, nothing is known about the expression and the localization of this transporter in D. immitis, despite its strong link to ML-resistant phenotypes. METHODS: We examined the clinically validated D. immitis P-glycoprotein 11 (DimPgp-11) single nucleotide polymorphism (SNP) via MiSeq analysis in three ML-susceptible isolates (Missouri, MP3 and Yazoo) and two ML-resistant isolates (JYD-34 and Metairie), and correlated the data with previously published MiSeq results of USA laboratory-maintained D. immitis isolates. The level of the expression of the DimPgp-11 messenger RNA transcript was analyzed by droplet digital PCR (ddPCR) and compared in the USA laboratory-maintained isolates, namely the ML-susceptible Missouri and Berkeley isolates, the putative ML-susceptible Georgia III and Big Head isolates and the ML-resistant isolate JYD-34. The immunolocalization of DimPgp-11 was visualized in the microfilaria (mf) life stage of the Missouri isolate using confocal microscopy. RESULTS: The results confirmed that the SNP found on DimPgp-11 is differentially expressed in the USA laboratory-maintained isolates. The ML-susceptible isolates had an alternate allele frequency of between 0% and 15%, while it ranged between 17% and 56% in the ML-resistant isolates. The constitutive expression of DimPgp-11 was similar in the Berkeley, Georgia III and Big Head isolates, while it was significantly decreased in the ML-resistant JYD-34 isolate (P < 0.05), when compared to the ML-susceptible Missouri isolate. The DimPgp-11 protein was distinctly localized within the excretory-secretory (ES) duct, pore cells and the excretory cell and, more faintly, along the mf body wall. CONCLUSION: Our data confirm that genetic polymorphism of DimPgp-11 is associated with ML resistance in USA laboratory-maintained D. imminits isolates. A link between DimPgp-11 and ML resistance in D. immitis is further supported by the lower protein expression in the ML-resistant JYD-34 isolate when compared with the ML-susceptible Missouri isolate. Interestingly, DimPgp-11 is strategically located surrounding the ES pore where it could play an active role in ML efflux.


Assuntos
Canidae , Dirofilaria immitis , Dirofilariose , Doenças do Cão , Cães , Animais , Dirofilaria immitis/genética , Lactonas , Dirofilariose/prevenção & controle , Polimorfismo de Nucleotídeo Único , Glicoproteínas , Proteínas de Membrana Transportadoras/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
3.
Parasitology ; 149(11): 1439-1449, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929352

RESUMO

Alternative strategies to chemical anthelmintics are needed for the sustainable control of equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to reducing drug use, with the first hints of in vitro activity against cyathostomin free-living stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period, they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with alfalfa pellets (control group) for 21-days. No difference was found between the average fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval development rate was observed for the sainfoin group, at the end of the trial. Quantification of cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed that the sainfoin diet did not affect the nemabiome structure compared to the control diet. Following oral ivermectin treatment of all horses on day 21, the drug concentration was lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group. Our results demonstrated that short-term consumption of a sainfoin-rich diet does not decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics, underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy in the field.


Assuntos
Anti-Helmínticos , Fabaceae , Animais , Anti-Helmínticos/farmacologia , Dieta/veterinária , Fabaceae/química , Fezes , Cavalos , Ivermectina/farmacologia , Larva , Contagem de Ovos de Parasitas/veterinária
4.
Vet Parasitol ; 296: 109511, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34237517

RESUMO

The management of equine strongyles has become problematic over the last decade because of an increased prevalence of drug-resistant isolates worldwide. Therapeutic options are therefore limited, leaving macrocyclic lactones as the most often effective drug class. However, their lipophilic properties result in a long-lasting elimination that could favour drug resistance selection. As a result, ivermectin treatment in lactating mares could promote suboptimal exposure of their foal parasites to ivermectin, thereby selecting for more resistant worms. To test for this putative transfer, we selected two groups of six foal-mare pairs, one group of mares receiving ivermectin and the other being left untreated. We compared faecal egg count trajectories in foals from the two groups and quantified plasma ivermectin concentrations in ivermectin treated mares and their foals during seven days. Our results showed limited but sustained plasmatic exposure of foals associated with non-significant faecal egg count reduction (P = 0.69). This suggests that ivermectin treatment in lactating mares results in suboptimal exposure to the drug in their foal.


Assuntos
Doenças dos Cavalos , Ivermectina , Lactação , Animais , Resistência a Medicamentos , Feminino , Doenças dos Cavalos/tratamento farmacológico , Cavalos/sangue , Ivermectina/sangue , Ivermectina/uso terapêutico , Contagem de Ovos de Parasitas/veterinária
6.
Front Pharmacol ; 12: 666348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093195

RESUMO

Ivermectin (IVM) and moxidectin (MOX) are used extensively as parasiticides in veterinary medicine. Based on in vitro data, IVM has recently been proposed for the prevention and treatment of COVID-19 infection, a condition for which obesity is a major risk factor. In patients, IVM dosage is based on total body weight and there are no recommendations to adjust dosage in obese patients. The objective of this study was to establish, in a canine model, the influence of obesity on the clearance and steady-state volume of distribution of IVM, MOX, and a third analog, eprinomectin (EPR). An experimental model of obesity in dogs was based on a high calorie diet. IVM, MOX, and EPR were administered intravenously, in combination, to a single group of dogs in two circumstances, during a control period and when body weight had been increased by 50%. In obese dogs, clearance, expressed in absolute values (L/day), was not modified for MOX but was reduced for IVM and EPR, compared to the initial control state. However, when scaled by body weight (L/day/kg), plasma clearance was reduced by 55, 42, and 63%, for IVM, MOX and EPR, respectively. In contrast, the steady-state volume of distribution was markedly increased, in absolute values (L), by obesity. For IVM and MOX, this obese dog model suggests that the maintenance doses in the obese subject should be based on lean body weight rather than total weight. On the other hand, the loading dose, when required, should be based on the total body weight of the obese subject.

7.
Food Chem ; 343: 128510, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33172753

RESUMO

ABCB1 (P-glycoprotein/MDR1) is a multidrug efflux transporter that has previously been involved in cholesterol and vitamin D metabolism. Our aim was to explore whether ABCB1 is also involved in vitamin K efflux. Vitamin K apical efflux was significantly decreased in presence of ABCB1 inhibitor in Caco-2 cells (-20.4%; p < 0.05) and increased in Griptite cells overexpressing ABCB1 (+40.7%; p < 0.05). In vivo, the vitamin K postprandial response was higher in male Abcb1-/- mice after gavage compared to control animals (+115%; p < 0.05), but was unchanged in female mice. Finally, a vitamin K transintestinal efflux and a biliary vitamin K efflux were observed, but the specific involvement of ABCB1 could not be confirmed in these pathways. Overall, we showed for the first time that ABCB1 is involved in enterocyte vitamin K efflux in both cell and mouse models and regulates vitamin K absorption in mice.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Vitamina K/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Células CACO-2 , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Feminino , Humanos , Masculino , Camundongos Mutantes , Período Pós-Prandial , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Sci Rep ; 10(1): 11207, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641726

RESUMO

Prevention therapy against Dirofilaria immitis in companion animals is currently threatened by the emergence of isolates resistant to macrocyclic lactone anthelmintics. Understanding the control over developmental processes in D. immitis is important for elucidating new approaches to heartworm control. The nuclear receptor DAF-12 plays a role in the entry and exit of dauer stage in Caenorhabditis elegans and in the development of free-living infective third-stage larvae (iL3) of some Clade IV and V parasitic nematodes. We identified a DAF-12 ortholog in the clade III nematode D. immitis and found that it exhibited a much higher affinity for dafachronic acids than described with other nematode DAF-12 investigated so far. We also modelled the DimDAF-12 structure and characterized the residues involved with DA binding. Moreover, we showed that cholesterol derivatives impacted the molting process from the iL3 to the fourth-stage larvae. Since D. immitis is unable to synthesize cholesterol and only completes its development upon host infection, we hypothesize that host environment contributes to its further molting inside the host vertebrate. Our discovery contributes to a better understanding of the developmental checkpoints of D. immitis and offers new perspectives for the development of novel therapies against filarial infections.


Assuntos
Colestenos/farmacologia , Dirofilaria immitis/crescimento & desenvolvimento , Dirofilariose/prevenção & controle , Doenças do Cão/prevenção & controle , Proteínas de Helminto/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Colestenos/uso terapêutico , Colesterol/metabolismo , Dirofilaria immitis/efeitos dos fármacos , Dirofilaria immitis/metabolismo , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Cães , Proteínas de Helminto/agonistas , Interações Hospedeiro-Parasita , Larva/efeitos dos fármacos , Larva/metabolismo , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Muda/efeitos dos fármacos , Células NIH 3T3 , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/agonistas
10.
Parasitol Int ; 76: 102063, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31978599

RESUMO

Pour-on eprinomectin was recently registered for lactating small ruminants. Given the high prevalence of benzimidazole resistance in gastrointestinal nematodes in dairy goats, many farmers use eprinomectin exclusively to treat their animals. On a French dairy goat farm, a veterinary practitioner noted a poor response to two types of eprinomectin treatment (pour-on application and injectable formulation). Therefore, we evaluated the efficacy of both formulations of eprinomectin, as well as moxidectin and fenbendazole, using the fecal egg count reduction test (FECRT) according to the World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines. Nematode species were identified at days 0 and post-treatment days 14 after bulk larval cultures, by morphology and real-time PCR. Plasma concentrations of eprinomectin were analyzed by high-performance liquid chromatography (HPLC) at post-treatment days 2 and 5 in the eprinomectin-treated groups. Egg count reductions were poor in animals treated with topical (-16.7%; 95% CI:[-237; 59]) or subcutaneous (21.5%; 95% CI:[-126; 73]) eprinomectin, and with fenbendazole (-5.8%; 95% CI:[-205; 63]). Haemonchus contortus was the main species identified by morphology and by real-time PCR before and after treatment. The plasma concentrations of eprinomectin were determined in all eprinomectin-treated animals and were above 2 ng/ml at post-treatment day 2, indicating that the lack of effect was not due to low exposure of the worms to the drug. Interestingly, moxidectin remained effective in all infected animals. This is the first report of multiple resistance to eprinomectin and benzimidazole in H. contortus on a French dairy goat farm with moxidectin as a relevant alternative.


Assuntos
Anti-Helmínticos/uso terapêutico , Benzimidazóis/uso terapêutico , Resistência a Múltiplos Medicamentos , Cabras/parasitologia , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Ivermectina/análogos & derivados , Animais , Anti-Helmínticos/sangue , Benzimidazóis/sangue , Fazendas , Feminino , França , Doenças das Cabras/tratamento farmacológico , Doenças das Cabras/parasitologia , Hemoncose/tratamento farmacológico , Ivermectina/sangue , Ivermectina/uso terapêutico , Contagem de Ovos de Parasitas
11.
PLoS Pathog ; 15(2): e1007598, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30759156

RESUMO

Resistance to the anthelmintic macrocyclic lactone ivermectin (IVM) has a great impact on the control of parasitic nematodes. The mechanisms by which nematodes adapt to IVM remain to be deciphered. We have identified NHR-8, a nuclear hormone receptor involved in the xenobiotic response in Caenorhabditis elegans, as a new regulator of tolerance to IVM. Loss-of-function nhr-8(ok186) C. elegans mutants subjected to larval development assays and electropharyngeogram measurements, displayed hypersensitivity to IVM, and silencing of nhr-8 in IVM-resistant worms increased IVM efficacy. In addition, compared to wild-type worms, nhr-8 mutants under IVM selection pressure failed to acquire tolerance to the drug. In addition, IVM-hypersensitive nhr-8(ok186) worms displayed low transcript levels of several genes from the xenobiotic detoxification network and a concomitant low Pgp-mediated drug efflux activity. Interestingly, some pgp and cyp genes known to impact IVM tolerance in many nematode species, were down regulated in nhr-8 mutants and inversely upregulated in IVM-resistant worms. Moreover, pgp-6 overexpression in nhr-8(ok186) C. elegans increased tolerance to IVM. Importantly, NHR-8 function was rescued in nhr-8(ok186) C. elegans with the homolog of the parasitic nematode Haemonchus contortus, and silencing of Hco-nhr-8 by RNAi on L2 H. contortus larvae increased IVM susceptibility in both susceptible and resistant H. contortus isolates. Thus, our data show that NHR-8 controls the tolerance and development of resistance to IVM in C. elegans and the molecular basis for this relates to the NHR-8-mediated upregulation of IVM detoxification genes. Since our results show that Hco-nhr-8 functions similarly to Cel-nhr-8, this study helps to better understand mechanisms underlying failure in drug efficacy and open perspectives in finding new compounds with NHR-8 antagonist activity to potentiate IVM efficacy.


Assuntos
Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Ivermectina/metabolismo , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Anti-Helmínticos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Resistência a Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Haemonchus , Ivermectina/farmacologia , Larva , Infecções por Nematoides/virologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/efeitos dos fármacos
12.
J Vet Pharmacol Ther ; 42(2): 189-196, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30520071

RESUMO

The aim of the current study was to evaluate the in vivo pharmacokinetic of ivermectin (IVM) after the administration of a long-acting (LA) formulation to sheep and its impact on potential drug-drug interactions. The work included the evaluation of the comparative plasma profiles of IVM administered at a single therapeutic dose (200 µg/kg) and as LA formulation at 630 µg/kg. Additionally, IVM was measured in different gastrointestinal tissues at 15 days posttreatment with both IVM formulations. The impact of the long-lasting and enhanced IVM exposure on the disposition kinetics of abamectin (ABM) was also assessed. Plasma (IVM and ABM) and gastrointestinal (IVM) concentrations were analyzed by HPLC with fluorescent detection. In plasma, the calculated Cmax and AUC0-t values of the IVM-LA formulation were 1.47- and 3.35-fold higher compared with IVM 1% formulation, respectively. The T1/2ab and Tmax collected after administration of the LA formulation were 2- and 3.5-fold longer than those observed after administration of IVM 1% formulation, respectively. Significantly higher IVM concentrations were measured in the intestine mucosal tissues and luminal contents with the LA formulation, and in the liver, the increase was 7-fold higher than conventional formulation. There was no drug interaction between IVM and ABM after the single administration of ABM at 15 days post-administration of the IVM LA formulation. The characterization of the kinetic behavior of the LA formulation to sheep and its potential influence on drug-drug interactions is a further contribution to the field.


Assuntos
Anti-Helmínticos/farmacocinética , Ivermectina/farmacocinética , Ovinos/metabolismo , Animais , Anti-Helmínticos/análise , Anti-Helmínticos/sangue , Cromatografia Líquida de Alta Pressão/veterinária , Preparações de Ação Retardada , Interações Medicamentosas , Injeções Subcutâneas , Intestinos/química , Ivermectina/administração & dosagem , Ivermectina/análise , Ivermectina/sangue , Fígado/química , Masculino , Ovinos/parasitologia
13.
FASEB J ; 33(2): 2084-2094, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30222077

RESUMO

Efficient intestinal absorption of dietary vitamin D is required in most people to ensure an adequate status. Thus, we investigated the involvement of ATP binding cassette subfamily B member 1 (ABCB1) in vitamin D intestinal efflux. Both cholecalciferol (D3) and 25-hydroxycholecalciferol [25(OH)D3] apical effluxes were decreased by chemical inhibition of ABCB1 in Caco-2 cells and increased by ABCB1 overexpression in Griptites or Madin-Darby canine kidney type II cells. Mice deficient for the 2 murine ABCB1s encoded by Abcb1a and Abcb1b genes ( Abcb1-/-) displayed an accumulation of 25(OH)D3 in plasma, intestine, brain, liver, and kidneys, together with an increased D3 postprandial response after gavage compared with controls. 25(OH)D3 efflux through Abcb1-/- intestinal explants was markedly decreased compared with controls. This reduction of 25(OH)D3 transfer from plasma to lumen was further confirmed in vivo in intestine-perfused mice. Docking experiments established that both D3 and 25(OH)D3 could bind with high affinity to Caenorhabditis elegans P-glycoprotein, used as an ABCB1 model. Finally, in a group of 39 healthy male adults, a single-nucleotide polymorphism (SNP) in ABCB1 (rs17064) was significantly associated with the fasting plasma 25(OH)D3 concentration. Thus, we showed here for the first time that ABCB1 is involved in neo-absorbed vitamin D efflux by the enterocytes and that it also contributes to vitamin D transintestinal excretion and likely impacts vitamin D status.-Margier, M., Collet, X., le May, C., Desmarchelier, C., André, F., Lebrun, C., Defoort, C., Bluteau, A., Borel, P., Lespine, A., Reboul, E. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux.


Assuntos
Calcifediol , Colecalciferol , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Vitamina D , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/genética , Células CACO-2 , Calcifediol/farmacocinética , Calcifediol/farmacologia , Colecalciferol/farmacocinética , Colecalciferol/farmacologia , Cães , Humanos , Absorção Intestinal/genética , Mucosa Intestinal/citologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Vitamina D/farmacocinética , Vitamina D/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-29914951

RESUMO

Scabies is a major and potentially growing public health problem worldwide with an unmet need for acaricidal agents with greater efficacy and improved pharmacological properties for its treatment. The objective of the present study was to assess the efficacy and describe the pharmacokinetics profile of a novel acaricide, afoxolaner (AFX), in a relevant experimental porcine model. Twelve pigs were experimentally infested and either treated with 2.5 mg/kg single dose oral AFX (n = 4) or 0.2 mg/kg, two doses 8 days apart, oral ivermectin ([IVM] n = 4) or not treated for scabies (n = 4). The response to treatment was assessed by the reduction of mite counts in skin scrapings as well as clinical and pruritus scores over time. Plasma and skin pharmacokinetics profiles for both AFX and IVM were evaluated. AFX efficacy was 100% at days 8 and 14 posttreatment and remained unchanged until the study end (day 45). IVM efficacy was 86% and 97% on days 8 and 14, respectively, with a few mites recovered at the study end. Clinical and pruritus scores decreased in both treated groups and remained constant in the control group. Plasma mean residence times (MRT) were 7.1 ± 2.4 and 1.1 ± 0.2 days for AFX and IVM, respectively. Skin MRT values were 16.2 ± 16.9 and 2.7 ± 0.5 days for AFX and IVM, respectively. Overall, a single oral dose of AFX was efficacious for the treatment of scabies in experimentally infested pigs and showed remarkably long MRTs in plasma and, notably, in the skin.


Assuntos
Antiparasitários/farmacologia , Antiparasitários/farmacocinética , Isoxazóis/farmacologia , Isoxazóis/farmacocinética , Naftalenos/farmacologia , Naftalenos/farmacocinética , Sarcoptes scabiei/efeitos dos fármacos , Escabiose/tratamento farmacológico , Acaricidas/farmacocinética , Acaricidas/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ivermectina/farmacocinética , Ivermectina/farmacologia , Escabiose/metabolismo , Escabiose/parasitologia , Pele/metabolismo , Pele/parasitologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/metabolismo , Doenças dos Suínos/parasitologia
15.
Int J Parasitol Drugs Drug Resist ; 8(1): 145-157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29571165

RESUMO

Haemonchus contortus, one of the most economically important parasites of small ruminants, has become resistant to the anthelmintic ivermectin. Deciphering the role of P-glycoproteins in ivermectin resistance is desirable for understanding and overcoming this resistance. In the model nematode, Caenorhabditis elegans, P-glycoprotein-13 is expressed in the amphids, important neuronal structures for ivermectin activity. We have focused on its ortholog in the parasite, Hco-Pgp-13. A 3D model of Hco-Pgp-13, presenting an open inward-facing conformation, has been constructed by homology with the Cel-Pgp-1 crystal structure. In silico docking calculations predicted high affinity binding of ivermectin and actinomycin D to the inner chamber of the protein. Following in vitro expression, we showed that ivermectin and actinomycin D modulated Hco-Pgp-13 ATPase activity with high affinity. Finally, we found in vivo Hco-Pgp-13 localization in epithelial, pharyngeal and neuronal tissues. Taken together, these data suggest a role for Hco-Pgp-13 in ivermectin transport, which could contribute to anthelmintic resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antiparasitários/metabolismo , Haemonchus/efeitos dos fármacos , Ivermectina/metabolismo , Homologia Estrutural de Proteína , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Adenosina Trifosfatases/efeitos dos fármacos , Animais , Antiparasitários/administração & dosagem , Antiparasitários/farmacologia , Transporte Biológico , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/parasitologia , Simulação por Computador , Dactinomicina/metabolismo , Resistência a Medicamentos/genética , Epitélio/química , Haemonchus/química , Haemonchus/genética , Ivermectina/administração & dosagem , Ivermectina/farmacologia , Simulação de Acoplamento Molecular , Faringe/química , Faringe/citologia , Ligação Proteica
16.
PLoS Negl Trop Dis ; 10(10): e0005030, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27732588

RESUMO

BACKGROUND: Scabies is one of the commonest dermatological conditions globally; however it is a largely underexplored and truly neglected infectious disease. Foremost, improvement in the management of this public health burden is imperative. Current treatments with topical agents and/or oral ivermectin (IVM) are insufficient and drug resistance is emerging. Moxidectin (MOX), with more advantageous pharmacological profiles may be a promising alternative. METHODOLOGY/PRINCIPAL FINDINGS: Using a porcine scabies model, 12 pigs were randomly assigned to receive orally either MOX (0.3 mg/kg once), IVM (0.2 mg/kg twice) or no treatment. We evaluated treatment efficacies by assessing mite count, clinical lesions, pruritus and ELISA-determined anti-S. scabiei IgG antibodies reductions. Plasma and skin pharmacokinetic profiles were determined. At day 14 post-treatment, all four MOX-treated but only two IVM-treated pigs were mite-free. MOX efficacy was 100% and remained unchanged until study-end (D47), compared to 62% (range 26-100%) for IVM, with one IVM-treated pig remaining infected until D47. Clinical scabies lesions, pruritus and anti-S. scabiei IgG antibodies had completely disappeared in all MOX-treated but only 75% of IVM-treated pigs. MOX persisted ~9 times longer than IVM in plasma and skin, thereby covering the mite's entire life cycle and enabling long-lasting efficacy. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that oral single-dose MOX was more effective than two consecutive IVM-doses, supporting MOX as potential therapeutic approach for scabies.


Assuntos
Acaricidas/administração & dosagem , Ivermectina/administração & dosagem , Macrolídeos/administração & dosagem , Escabiose/tratamento farmacológico , Acaricidas/efeitos adversos , Acaricidas/farmacocinética , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ivermectina/efeitos adversos , Ivermectina/farmacocinética , Macrolídeos/efeitos adversos , Macrolídeos/farmacocinética , Modelos Animais , Sarcoptes scabiei/efeitos dos fármacos , Suínos
17.
Int J Parasitol Drugs Drug Resist ; 6(3): 299-313, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27746191

RESUMO

Macrocyclic lactones (ML) are important anthelmintics used in animals and humans against parasite nematodes, but their therapeutic success is compromised by the spread of ML resistance. Some ABC transporters, such as p-glycoproteins (Pgps), are selected and overexpressed in ML-resistant nematodes, supporting a role for some drug efflux proteins in ML resistance. However, the role of such proteins in ML transport remains to be clarified at the molecular level. Recently, Caenorhabditis elegans Pgp-1 (Cel-Pgp-1) has been crystallized, and its drug-modulated ATPase function characterized in vitro revealed Cel-Pgp-1 as a multidrug transporter. Using this crystal structure, we have developed an in silico drug docking model in order to study the binding of ML and other anthelmintic drugs to Cel-Pgp-1. All tested ML bound with high affinity in a unique site, within the inner chamber of the protein, supporting that ML may be transported by Cel-Pgp-1. Interestingly, interacting residues delineate a ML specific fingerprint involving H-bonds, including T1028. In particular, benzofurane and spiroketal moieties bound to specific sub-sites. When compared with the aglycone ML, such as moxidectin and ivermectin aglycone, avermectin anthelmintics have significant higher affinity for Cel-Pgp-1, likely due to the sugar substituent(s) that bind to a specific area involving H-bonds at Y771. Triclabendazole, closantel and emodepside bound with good affinities to different sub-sites in the inner chamber, partially overlapping with the ML binding site, suggesting that they could compete for Cel-Pgp-1-mediated ML transport. In conclusion, this work provides novel information on the role of nematode Pgps in transporting anthelmintics, and a valuable tool to predict drug-drug interactions and to rationally design new competitive inhibitors of clinically-relevant nematode Pgps, to improve anthelmintic therapeutics.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Helmínticos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Simulação de Acoplamento Molecular , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cristalografia por Raios X , Lactonas/metabolismo , Compostos Macrocíclicos/metabolismo , Ligação Proteica , Conformação Proteica
18.
Vet Parasitol ; 227: 122-9, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27523948

RESUMO

The worldwide spread of resistance to anthelmintic (AH) drugs in gastrointestinal nematodes (GINs) imposes to explore alternative solutions. Amongst those, the possible use of tannin-containing nutraceuticals appears as a relevant option to replace (or decrease the frequency of) chemical-based treatments. Our objectives were to test the AH efficacy of sainfoin pellets against a multiresistant strain of Haemonchus contortus in experimentally infected lambs and to examine possible interaction between ivermectin (IVM) and condensed tannins (CT)-rich ressource. In vivo study was performed with twenty-four lambs were inoculated (Day 0) with multiresistant H. contortus infective larvae. On D21 Post-Infection, the lambs were assigned to two dietary treatments (sainfoin vs lucerne control pellets). On D39, half of the animals per group received 0.25ml/kg of an oral ivermectin treatment. On D47, animals were slaughtered to count worms. The consumption of sainfoin was associated with higher packed cell volume (PCV) values (P<0.05) and reduced faecal egg counts (FECs) (P<0.05). For the experimental feeding period, FECs were overall reduced by 50% in the sainfoin group. The diet did not have significant effect on the worm number but sainfoin significantly reduced female fertility. Decrease in plasma IVM concentrations was observed in the sainfoin-fed animals and was associated with a decrease of IVM efficiency when compared with the control group. Incubating tannin in vitro with ivermectin and rumen fluid showed a blocking of ivermectin by the tannins. This suggests that tannins lower the IVM intestinal absorption compromising thereby drug plasma bioavailability and efficacy. Tannin-containing nutraceuticals alter the biology of multiresistant nematodes, thus representing an option for their sustainable control. In vivo and in vitro interactions between nutraceuticals and chemicals impose caution when both tannin-rich diet and drug-based treatments are combined. Further studies are required to clarify the mechanisms that support such interactions.


Assuntos
Interações Medicamentosas , Hemoncose/tratamento farmacológico , Haemonchus/efeitos dos fármacos , Ivermectina/farmacocinética , Extratos Vegetais/farmacologia , Doenças dos Ovinos/parasitologia , Animais , Resistência a Medicamentos , Fabaceae/química , Ivermectina/administração & dosagem , Larva/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ovinos , Doenças dos Ovinos/tratamento farmacológico
19.
Antimicrob Agents Chemother ; 60(8): 4809-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246778

RESUMO

Ivermectin and moxidectin are the most widely administered anthelmintic macrocyclic lactones (MLs) to treat human and animal nematode infections. Their widespread and frequent use has led to a high level of resistance to these drugs. Although they have the same mode of action, differences in terms of selection for drug resistance have been reported. Our objective was to study and compare changes occurring upon ivermectin or moxidectin selection in the model nematode Caenorhabditis elegans C. elegans worms were submitted to stepwise exposure to increasing doses of moxidectin. The sensitivity of moxidectin-selected worms to MLs was determined in a larval development assay and compared with those of wild-type and ivermectin-selected strains. Selection with either ivermectin or moxidectin led to acquired tolerance to ivermectin, moxidectin, and eprinomectin. Importantly, moxidectin was the most potent ML in both ivermectin- and moxidectin-selected strains. Interestingly, this order of potency was also observed in a resistant Haemonchus contortus isolate. In addition, ivermectin- and moxidectin-selected strains displayed constitutive overexpression of several genes involved in xenobiotic metabolism and transport. Moreover, verapamil potentiated sensitivity to ivermectin and moxidectin, demonstrating that ABC transporters play a role in ML sensitivity in ML-selected C. elegans strains. Finally, both ivermectin- and moxidectin-selected strains displayed a dye-filling-defective phenotype. Overall, this work demonstrated that selection with ivermectin or moxidectin led to cross-resistance to several MLs in nematodes and that the induction of detoxification systems and defects in the integrity of amphidial neurons are two mechanisms that appear to affect the responsiveness of worms to both ivermectin and moxidectin.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ivermectina/farmacologia , Macrolídeos/farmacologia , Animais , Resistência a Medicamentos/efeitos dos fármacos , Haemonchus/efeitos dos fármacos , Ivermectina/análogos & derivados , Lactonas/farmacologia , Larva/efeitos dos fármacos , Fenótipo , Verapamil/farmacologia
20.
Int J Parasitol Drugs Drug Resist ; 4(3): 164-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25516826

RESUMO

Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...