Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2305515, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641886

RESUMO

Cannabis producers, consumers, and regulators need fast, accurate, point-of-use sensors to detect Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from both liquid and vapor source samples, and phthalocyanine-based organic thin-film transistors (OTFTs) provide a cost-effective solution. Chloro aluminum phthalocyanine (Cl-AlPc) has emerged as a promising material due to its unique coordinating interactions with cannabinoids, allowing for superior sensitivity. This work explores the molecular engineering of AlPc to tune and enhance these interactions, where a series of novel phenxoylated R-AlPcs are synthesized and integrated into OTFTs, which are then exposed to THC and CBD solution and vapor samples. While the R-AlPc substituted molecules have a comparable baseline device performance to Cl-AlPc, their new crystal structures and weakened intermolecular interactions increase sensitivity to THC. Grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) are used to investigate this film restructuring, where a significant shift in the crystal structure, grain size, and film roughness is detected for the R-AlPc molecules that do not occur with Cl-AlPc. This significant crystal reorganization and film restructuring are the driving force behind the improved sensitivity to cannabinoids relative to Cl-AlPc and demonstrate that analyte-semiconductor interactions can be enhanced through chemical modification to create more responsive OTFT sensors.

2.
ACS Appl Mater Interfaces ; 15(47): 55109-55118, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963182

RESUMO

Poly(3-hexylthiophene) is one of the most prevalent and promising conjugated polymers for use in organic electronics. However, the deposition of this material in thin films is highly dependent on the process, such as blade coating versus spin coating and material properties such as molecular weight. Typically, large polymer dispersity makes it difficult to isolate the effect of molecular weight without considering a distribution. In this study, we characterize oligothiophenes of exactly 8, 11, and 14 repeat units, which were deposited into thin films by varying blade coating conditions and postdeposition annealing. From synchrotron-based grazing incidence wide-angle X-ray scattering (GIWAXS), scanning transmission X-ray microscopy (STXM) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Raman microscopy, optical microscopy, and X-ray diffraction (XRD), it was suggested that higher molecular weight polymers exhibit a fast-forming crystalline polymorph (form-1) while low molecular weight polymers exhibit a slow forming polymorph (form-2) with large domain boundaries. As molecular weight is gradually increased, the polymorph formed transitions from form-1 and form-2, where 11 repeat unit oligomers display both polymorphs. We also found that processing conditions can increase the formation of the form-2 polymorph. We also report improved organic thin film transistor (OTFT) performance when form-1 is present. Overall, oligothiophene polymorph formation is highly dependent on the molecular weight and processing conditions, providing critical insight into the importance of polymer weight control in the development of thin-film electronics based on conjugated polymers.

3.
ACS Appl Polym Mater ; 5(4): 2639-2653, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090422

RESUMO

The proliferation of high-performance thin-film electronics depends on the development of highly conductive solid-state polymeric materials. We report on the synthesis and properties investigation of well-defined cationic and anionic poly(ionic liquid) AB-C type block copolymers, where the AB block was formed by random copolymerization of highly conductive anionic or cationic monomers with poly(ethylene glycol) methyl ether methacrylate, while the C block was obtained by post-polymerization of 2-phenylethyl methacrylate. The resulting ionic block copolymers were found to self-assemble into a lamellar morphology, exhibiting high ionic conductivity (up to 3.6 × 10-6 S cm-1 at 25 °C) and sufficient electrochemical stability (up to 3.4 V vs Ag+/Ag at 25 °C) as well as enhanced viscoelastic (mechanical) performance (storage modulus up to 3.8 × 105 Pa). The polymers were then tested as separators in two all-solid-state electrochemical devices: parallel plate metal-insulator-metal (MIM) capacitors and thin-film transistors (TFTs). The laboratory-scale truly solid-state MIM capacitors showed the start of electrical double-layer (EDL) formation at ∼103 Hz and high areal capacitance (up to 17.2 µF cm-2). For solid-state TFTs, low hysteresis was observed at 10 Hz due to the completion of EDL formation and the devices were found to have low threshold voltages of -0.3 and 1.1 V for p-type and n-type operations, respectively.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36897075

RESUMO

Understanding the effect of surface chemistry on the dielectric-semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens-Wendt method and related to electron field-effect mobility of devices (µe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting µe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor-dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average µe of 7.2 × 10-2 cm2·V-1·s-1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average VT. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.

5.
ACS Omega ; 8(1): 1588-1596, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643570

RESUMO

We demonstrate large-area (1 cm2) organic photovoltaic (OPVs) devices based on bis(tri-n-butylsilyl oxide) silicon phthalocyanine (3BS)2-SiPc as a non-fullerene acceptor (NFA) with low synthetic complexity paired with poly(3-hexylthiophene) (P3HT) as a donor polymer. Environment-friendly nonhalogenated solvents were used to process large area OPVs on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. An alternate sequentially (Alt-Sq) blade-coated active layer with bulk heterojunction-like morphology is obtained when using (3BS)2-SiPc processing with o-xylene/1,3,5-trimethylbenzene solvents. The sequential (Sq) active layer is prepared by first blade-coating (3BS)2-SiPc solution followed by P3HT coated on the top without any post-treatment. The conventional sequentially (Sq) blade-coated active layer presents very low performance due to the (3BS)2-SiPc bottom layer being partially washed off by processing the top layer of P3HT. In contrast, alternate sequentially (Alt-Sq) blade-coated layer-by-layer film shows even better device performance compared to the bulk heterojunction (BHJ) active layer. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and atomic force microscopy (AFM) reveal that the Alt-Sq processing of the active layer leads to a BHJ-like morphology with a well-intermixed donor-acceptor component in the active layer while providing a simpler processing approach to low-cost and large-scale OPV production.

6.
ACS Appl Mater Interfaces ; 15(2): 3680-3688, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36603855

RESUMO

Electronic waste is a growing challenge which needs to be addressed through the integration of high-performance sustainable materials. Green dielectric polymers such as poly(vinyl alcohol) (PVA) have favorable electrical properties but are challenging to integrate into thin film electronics due to their physical properties. For example, PVA suffers from poor film formation and is hygroscopic. Bilayer dielectrics with interfacial cross-linking can enable the use of high-performance PVA with favorable surface chemistry by using a hydrophobic poly(caprolactone) (PCL) layer. In this study, we developed a benzodioxinone-terminated PCL layer, which can be UV cross-linked to the hydroxy groups of the PVA dielectric. This air-stable UV-cross-linking PCL dielectric was able to effectively cross-link with PVA, leading to high-performance capacitors and single-walled carbon nanotube-based thin film transistors. This UV cross-linking PCL dielectric led to significant improvements in shelf-life, ease of processing, and similar device performance compared to our previously reported thermally cross-linking PCL layer. The UV cross-linking at the interface between these bilayers can allow for the integration of high-speed roll-to-roll processing, which enables low-cost, sustainable, and high-performance electronics.

7.
Small ; 19(12): e2206792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567424

RESUMO

Thin-film microstructure, morphology, and polymorphism can be controlled and optimized to improve the performance of carbon-based electronics. Thermal or solvent vapor annealing are common post-deposition processing techniques; however, it can be difficult to control or destructive to the active layer or substrates. Here, the use of a static, strong magnetic field (SMF) as a non-destructive process for the improvement of phthalocyanine (Pc) thin-film microstructure, increasing organic thin-film transistor (OTFTs) mobility by twofold, is demonstrated. Grazing incident wide-angle X-ray scattering (GIWAXS), X-ray diffraction (XRD), and atomic force microscopy (AFM) elucidate the effect of SMF on both para- and diamagnetic Pc thin-films when subjected to a magnetic field. A SMF is found to increase the concentration of oxygen-induced radical species within the Pc thin-film, lending a paramagnetic character to ordinarily diamagnetic metal-free Pc and resulting in magnetic field induced changes to its thin-film microstructures. In a nitrogen environment, without competing degradation effects of molecular oxygen, SMF processing is found to favorably improve charge transport characteristics and increase OTFT mobility. Thus, post-deposition thin-film annealing with a magnetic field is presented as an alternative and promising technique for future thin-film engineering applications.

8.
Chem Asian J ; 17(23): e202200887, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36163645

RESUMO

In this paper, we report the design and synthesis of three naphthalene diimide- (NDI) and anthraquinone- (AQ) based organic chromophores derived from direct arylation reactions; NDI-AQ, AQ-NDI-AQ and NDI-AQ-NDI. Compared to classic cross-coupling reactions, this method reduced the number of synthetic and purification steps. The chemical structures, photophysical and electrochemical properties of these molecules were characterized using UV-vis spectroscopy, fluorescence emission spectroscopy and cyclic voltammetry (CV). The optoelectronic properties of the three dyes enabled the fabrication of organic thin film transistors (OTFTs). The fabricated OTFTs displayed good n-type semiconducting properties, with electron mobilities ( µ e ${{\mu }_{e}}$ ) of 1.5-4.2×10-4  cm2  V-1 s-1 .

9.
J Am Chem Soc ; 144(36): 16456-16470, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044779

RESUMO

Polymer self-assembly is a powerful approach for forming nanostructures for solution-phase applications. However, polymer semiconductor assembly has primarily been driven by solvent interactions. Here, we report poly(3-hexythiophene) homopolymer assembly driven and stabilized by oxidative doping with iron (III) p-toluenesulfonate in benzonitrile. By this improved method, dopant mol % and addition temperature determine the size and morphology of oxidized polymer nanostructures. The dopant counterion provides colloidal stability in a process of dopant-stabilized assembly (DSA). Each variable governing polymer assembly is systematically varied, revealing general principles of oxidized nanostructure assembly and allowing the polymer planarity, optical absorption, and doping level to be modulated. Oxidized nanostructure heights, lengths, and widths are shown to depend on these properties, which we hypothesize is due to competing nanostructure formation and oxidation mechanisms that are governed by the polymer conformation upon doping. Finally, we demonstrate that the nanoparticle oxidative doping level can be tuned post-formation through sequential dopant addition. By revealing the fundamental processes underlying DSA, this work provides a powerful toolkit to control the assembly and optoelectronic properties of oxidatively doped nanostructures in solution.


Assuntos
Nanoestruturas , Tiofenos , Nanoestruturas/química , Polímeros , Semicondutores , Tiofenos/química
10.
ACS Appl Mater Interfaces ; 14(35): 40361-40370, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998386

RESUMO

The widespread realization of wearable electronics requires printable active materials capable of operating at low voltages. Polymerized ionic liquid (PIL) block copolymers exhibit a thickness-independent double-layer capacitance that makes them a promising gating medium for the development of organic thin-film transistors (OTFTs) with low operating voltages and high switching speed. PIL block copolymer structure and self-assembly can influence ion conductivity and the resulting OTFT performance. In an OTFT, self-assembly of the PIL gate on the semiconducting polymer may differ from bulk self-assembly, which would directly influence electrical double-layer formation. To this end, we used poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as a model semiconductor for our OTFTs, on which our PILs exhibited self-assembly. In this study, we explore this critical interface by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM) of P(NDI2OD-T2) and a series of poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6-, or BF4-). We investigate the thin-film self-assembly of block copolymers as a function of device performance. Overall, a mixed orientation at the interface leads to improved device performance, while predominantly hexagonal packing leads to nonfunctional devices, regardless of the anion present. These PIL gated OTFTs were characterized with a threshold voltage below 1 V, making understanding of their structure-property relationships crucial to enabling the further development of high-performance gating materials.

11.
RSC Adv ; 12(16): 10029-10036, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424912

RESUMO

Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9'-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650-730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices.

12.
ACS Omega ; 7(9): 7541-7549, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284724

RESUMO

Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)2-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)2-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)2-SiPc or PC61BM. PBDB-T/(3BS)2-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V oc) as high as 1.06 V, which is among the highest V oc obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V oc. Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)2-SiPc as an NFA. These findings suggest that (3BS)2-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs.

13.
Mol Imaging Biol ; 24(5): 675-691, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35257276

RESUMO

By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.


Assuntos
Imagem Molecular , Humanos , Biomarcadores/análise
14.
Commun Chem ; 5(1): 178, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36697684

RESUMO

Phthalocyanine-based organic thin-film transistors (OTFTs) have been demonstrated as sensors for a range of analytes, including cannabinoids, in both liquid and gas phases. Detection of the primary cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is necessary for quality control and regulation, however, current techniques are often not readily available for consumers, industry, and law-enforcement. The OTFT characteristics, X-ray diffraction (XRD) spectra, and grazing incident wide angle x-ray scattering (GIWAXS) spectra of two copper and three zinc phthalocyanines, with varying degrees of peripheral fluorination, were screened to determine sensitivity to THC vapor. Unsubstituted ZnPc was found to be the most sensitive material and, by tuning thin-film morphology, crystal polymorphs, and thickness through altered physical vapor deposition conditions, we increased the sensitivity to THC by 100x. Here we demonstrate that deposition conditions, and the resulting physical film characteristics, play a significant role in device sensitization.

15.
ACS Omega ; 6(41): 26857-26869, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693107

RESUMO

Axial functionalization is one mode that enables the solubility of silicon phthalocyanines (SiPcs). Our group observed that the use of typical axial functionalization methodologies on reaction of Cl2SiPc with the chlorotriphenyl silane reagent unexpectedly resulted in the equal formation of triphenyl silyloxy silicon tetrabenzotriazacorrole ((3PS)-SiTbc) and the desired bis(tri-phenyl siloxy)-silicon phthalocyanine ((3PS)2-SiPc). The formation of a (3PS)-SiTbc was unexpected, and the separation of (3PS)-SiTbc and (3PS)2-SiPc was difficult. Therefore, in this study, we investigated the use of Piers-Rubinsztajn (PR) chemistry as an alternative method to functionalize the axial position of a SiPc to avoid the generation of a Tbc derivative. PR chemistry is a novel method to form a Si-O bond starting with a Si-H-based reactant and a -OH-based nucleophile enabled by tris(pentafluorophenyl)borane as a catalyst. The PR chemistry was screened on several fronts on how it can be applied to SiPcs. It was found that the process needs to be run in nitrobenzene at a molar ratio and at a particular temperature. To this end, the triphenylsiloxy derivative (3PS)2-SiPc was produced and fully characterized, without the production of a Tbc derivative. In addition, we explored and outlined that the PR chemistry method can enable the formation of other SiPc derivatives that are inaccessible utilizing other established axial substitution chemistry methods such as (TM3)2-SiPc and (MDM)2-SiPc. These additional materials were also physically characterized. The main conclusion is that the PR chemistry method can be applied to SiPcs and yield several alternative derivatives and has the potential to apply to additional macrocyclic compounds for unique derivative formation.

16.
JACS Au ; 1(7): 1044-1056, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467348

RESUMO

Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6 - or BF4 -), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI+ in the poly(VBBI+[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T g) between -7 and 55 °C for that block. When VBBI+ composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C DL) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T g of the poly(VBBI+[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5-1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C DL is not strictly proportional to OTFT output currents.

17.
Sci Rep ; 11(1): 15347, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321540

RESUMO

While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.

18.
ACS Appl Mater Interfaces ; 13(27): 31321-31330, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197065

RESUMO

Silicon phthalocyanines are emerging n-type semiconductors for use in organic photovoltaics (OPVs) and organic thin-film transistors (OTFTs). Their low synthetic complexity paired with their versatile axial group facilitates the fine-tuning of their chemical properties, solution properties and processing characteristics without significantly affecting their frontier orbital levels or their absorption properties. The crystal engineering and film forming characteristics of silicon phthalocyanine semiconductors can be tuned through appropriate axial group functionalization, therefore facilitating their integration into both OTFTs and OPVs by solution processing or vapor deposition. This Spotlight on Applications will discuss recent advances in the integration of this exciting class of phthalocyanine into OTFTs and OPVs and highlights their promising future.

19.
ACS Nano ; 15(5): 8252-8266, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33831298

RESUMO

Ultrapure semiconducting single-walled carbon nanotube (sc-SWNT) dispersions produced through conjugated polymer sorting are ideal candidates for the fabrication of solution-processed organic electronic devices on a commercial scale. Protocols for sorting and dispersing ultrapure sc-SWNTs with conjugated polymers for thin-film transistor (TFT) applications have been well refined. Conventional wisdom dictates that removal of excess unbound polymer through filtration or centrifugation is necessary to produce high-performance TFTs. However, this is time-consuming, wasteful, and resource-intensive. In this report, we challenge this paradigm and demonstrate that excess unbound polymer during semiconductor film fabrication is not necessarily detrimental to device performance. Over 1200 TFT devices were fabricated from 30 unique polymer-sorted SWNT dispersions, prepared using two different alternating copolymers. Detailed Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) studies of the random-network semiconductor films demonstrated that a simple solvent rinse during TFT fabrication was sufficient to remove unbound polymer from the sc-SWNT films, thus eliminating laborious polymer removal before TFT fabrication. Furthermore, below a threshold polymer concentration, the presence of excess polymer during fabrication did not significantly impede TFT performance. Preeminent performance was achieved for devices prepared from native polymer-sorted SWNT dispersions containing the "original" amount of excess unbound polymer (immediately following enrichment). Lastly, we developed an open-source Machine Learning algorithm to quantitatively analyze AFM images of SWNT films for surface coverage, number of tubes, and tube alignment.

20.
ChemistryOpen ; 10(4): 414-420, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543836

RESUMO

In this paper, we described the design, synthesis, and characterization of two novel naphthalene diimide (NDI) core-based targets modified with terminal fullerene (C60 ) yield - so called S4 and S5, in which NDI bearing 1 and 2 molecules of C60 , respectively. The absorption, electrochemical and thin-film transistor characteristics of the newly developed targets were investigated in detail. Both S4 and S5 displayed broad absorption in the 450-500 nm region, owing to the effect of conjugation due to fullerene functionalities. The electrochemical measurement suggested that the HOMO and the LUMO energy levels can be altered with the number of C60 units. Both S4 and S5 were employed as organic semiconductor materials in n-channel transistors. The thin film transistor based on S4 exhibited superior electron mobility (µe) values ranging from 1.20×10-4 to 3.58×10-4  cm2  V-1 s-1 with a current on-off ratio varying from 102 to 103 in comparison with the performance of S5 based transistor, which exhibited µe ranging from 8.33×10-5 to 2.03×10-4  cm2  V-1 s-1 depending on channel lengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...