Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650120

RESUMO

INTRODUCTION: Low cardiorespiratory fitness (CRF) increases the risk of cardiovascular disease by up to 8-fold, and is one of the strongest predictors of mortality. Some studies demonstrate impaired CRF in people living with type 1 and type 2 diabetes compared to those without diabetes, while others demonstrate no diabetes-associated impairment in CRF. PURPOSE: We aimed to determine whether diabetes can influence CRF, and if so, identify clinical associations underlying diabetes-associated exercise impairments. METHODS: 68 studies were included in the quantitative analysis. Standardized mean difference (SMD) was calculated and meta-analyses and meta-regressions were performed by using a random-effects model. RESULTS: Diabetes is associated with a large negative effect on CRF (SMD = -0.80; p < 0.001)- an effect that is partially mitigated, but still significant, in those with high physical activity levels (SMD = -0.50; p = 0.007). A sedentary lifestyle (SMD = -0.83; p = 0.007), and the presence of clinical complications related to diabetes (SMD = -1.66; p < 0.001) predict a greater magnitude of CRF reduction in people with diabetes compared to controls without diabetes. Both type 1 and type 2 diabetes are independently associated with impaired CRF compared to controls without diabetes; however, the effect is significantly greater in those type 2 diabetes (SMD = -0.97; p < 0.001). Meta-regression analysis demonstrates the effects of diabetes on CRF are primarily associated with HbA1c levels for type 1 diabetes (B = -0.07; p < 0.001) and body mass index for type 2 diabetes (B = -0.17; p = 0.005). CONCLUSIONS: These data demonstrate a negative influence of diabetes on the key risk factor of low CRF and provide critical insight into specific clinical markers of low CRF associated with diabetes.

2.
Exerc Sport Sci Rev ; 52(2): 47-53, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112622

RESUMO

Aerobic exercise is established to increase cardiorespiratory fitness (CRF), which is linked to reduced morbidity and mortality. However, people with metabolic diseases such as type 1 and type 2 diabetes may be more likely to display blunted improvements in CRF with training. Here, we present evidence supporting the hypothesis that altered skeletal muscle signaling and remodeling may contribute to low CRF with metabolic disease.


Assuntos
Aptidão Cardiorrespiratória , Diabetes Mellitus Tipo 2 , Humanos , Exercício Físico/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Terapia por Exercício , Músculo Esquelético/fisiologia
3.
Diabetes ; 71(5): 881-893, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108373

RESUMO

Chronic hyperglycemia is associated with low response to aerobic exercise training in rodent models and humans, including reduced aerobic exercise capacity and impaired oxidative remodeling in skeletal muscle. Here, we investigated whether glucose lowering with the sodium-glucose cotransporter 2 inhibitor (SGLT2i), canagliflozin (Cana; 30 mg/kg/day), could restore exercise training response in a model of hyperglycemia (low-dose streptozotocin [STZ]). Cana effectively prevented increased blood glucose in STZ-treated mice. After 6 weeks of voluntary wheel running, Cana-treated mice displayed improvements in aerobic exercise capacity, higher capillary density in striated muscle, and a more oxidative fiber-type in skeletal muscle. In contrast, these responses were blunted or absent in STZ-treated mice. Recent work implicates glucose-induced accumulation of skeletal muscle extracellular matrix (ECM) and hyperactivation of c-Jun N-terminal kinase (JNK)/SMAD2 mechanical signaling as potential mechanisms underlying poor exercise response. In line with this, muscle ECM accretion was prevented by Cana in STZ-treated mice. JNK/SMAD2 signaling with acute exercise was twofold higher in STZ compared with control but was normalized by Cana. In human participants, ECM accumulation was associated with increased JNK signaling, low VO2peak, and impaired metabolic health (oral glucose tolerance test-derived insulin sensitivity). These data demonstrate that hyperglycemia-associated impairments in exercise adaptation can be ameliorated by cotherapy with SGLT2i.


Assuntos
Hiperglicemia , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Matriz Extracelular/metabolismo , Glucose/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/prevenção & controle , Camundongos , Atividade Motora , Músculo Esquelético/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Estreptozocina
4.
PLoS One ; 17(1): e0261723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025912

RESUMO

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


Assuntos
Treino Aeróbico/métodos , Elevação dos Membros Posteriores/métodos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcriptoma/fisiologia , Adaptação Fisiológica , Animais , Terapia por Exercício , Feminino , Biblioteca Genômica , Humanos , Masculino , Condicionamento Físico Animal , Ratos , Análise de Sequência de RNA
5.
Nat Metab ; 3(7): 887-889, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099927
6.
Mol Metab ; 51: 101226, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33812060

RESUMO

OBJECTIVE: MicroRNAs (miRNA) are known to regulate the expression of genes involved in several physiological processes including metabolism, mitochondrial biogenesis, proliferation, differentiation, and cell death. METHODS: Using "in silico" analyses, we identified 219 unique miRNAs that potentially bind to the 3'UTR region of a critical mitochondrial regulator, the peroxisome proliferator-activated receptor gamma coactivator (PGC) 1 alpha (Pgc1α). Of the 219 candidate miRNAs, miR-696 had one of the highest interactions at the 3'UTR of Pgc1α, suggesting that miR-696 may be involved in the regulation of Pgc1α. RESULTS: Consistent with this hypothesis, we found that miR-696 was highly expressed in the skeletal muscle of STZ-induced diabetic mice and chronic high-fat-fed mice. C2C12 muscle cells exposed to palmitic acid also exhibited a higher expression of miR-696. This increased expression corresponded with a reduced expression of oxidative metabolism genes and reduced mitochondrial respiration. Importantly, reducing miR-696 reversed decreases in mitochondrial activity in response to palmitic acid. Using C2C12 cells treated with the AMP-activated protein kinase (AMPK) activator AICAR and skeletal muscle from AMPKα2 dominant-negative (DN) mice, we found that the signaling mechanism regulating miR-696 did not involve AMPK. In contrast, overexpression of SNF1-AMPK-related kinase (SNARK) in C2C12 cells increased miR-696 transcription while knockdown of SNARK significantly decreased miR-696. Moreover, muscle-specific transgenic mice overexpressing SNARK exhibited a lower expression of Pgc1α, elevated levels of miR-696, and reduced amounts of spontaneous activity. CONCLUSIONS: Our findings demonstrate that metabolic stress increases miR-696 expression in skeletal muscle cells, which in turn inhibits Pgc1α, reducing mitochondrial function. SNARK plays a role in this process as a metabolic stress signaling molecule inducing the expression of miR-696.


Assuntos
Diabetes Mellitus Experimental/patologia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regiões 3' não Traduzidas , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
7.
Exp Physiol ; 106(3): 714-725, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486778

RESUMO

NEW FINDINGS: What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT: Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Adaptação Fisiológica/fisiologia , Animais , Feminino , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Resistência Física , Ratos
8.
Nat Metab ; 2(9): 902-917, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32694831

RESUMO

Increased aerobic exercise capacity, as a result of exercise training, has important health benefits. However, some individuals are resistant to improvements in exercise capacity, probably due to undetermined genetic and environmental factors. Here, we show that exercise-induced improvements in aerobic capacity are blunted and aerobic remodelling of skeletal muscle is impaired in several animal models associated with chronic hyperglycaemia. Our data point to chronic hyperglycaemia as a potential negative regulator of aerobic adaptation, in part, via glucose-mediated modifications of the extracellular matrix, impaired vascularization and aberrant mechanical signalling in muscle. We also observe low exercise capacity and enhanced c-Jun N-terminal kinase activation in response to exercise in humans with impaired glucose tolerance. Our work indicates that current shifts in dietary and metabolic health, associated with increasing incidence of hyperglycaemia, might impair muscular and organismal adaptations to exercise training, including aerobic capacity as one of its key health outcomes.


Assuntos
Adaptação Fisiológica/fisiologia , Aerobiose/fisiologia , Exercício Físico/fisiologia , Hiperglicemia/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Transdução de Sinais , Adulto , Limiar Anaeróbio/fisiologia , Animais , Células Endoteliais/fisiologia , Ativação Enzimática , Feminino , Intolerância à Glucose/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Ratos , Adulto Jovem
9.
Biomed Pharmacother ; 117: 109197, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387190

RESUMO

Sucrose nonfermenting AMPK-related kinase (SNARK) is a member of the AMPK family of kinases and has been implicated in the regulation of critical metabolic processes. Recent findings demonstrate that SNARK has an important role in the maintenance of muscle mass with age. Loss of skeletal muscle mass (cachexia) is a key problem for cancer patients. Thus, based on our previous findings with aging, we hypothesized that SNARK would play a role in regulating muscle mass under conditions of cancer cachexia. To test this hypothesis, Lewis Lung Carcinoma tumor cells or vehicle were injected subcutaneously in the right flank of wild type mice, muscle-specific transgenic mice expressing inactive SNARK mutant (SDN) or muscle-specific transgenic mice overexpressing wild-type SNARK (SWT). All tumor-bearing mice presented muscle wasting compared to vehicle-injected mice. However, SDN tumor-bearing mice had more pronounced atrophy compared to wild-type and SWT tumor-bearing mice. Histological analysis confirmed muscle atrophy in tumor-bearing mice, and SDN tumor-bearing mice exhibited a significantly smaller skeletal muscle cross-sectional area than wild-type and SWT tumor-bearing mice. Moreover, SDN tumor-bearing mice had increased skeletal muscle BAX protein expression, a marker of apoptosis, compared to other groups.Thus, lack of SNARK in skeletal muscle aggravates cancer-induced skeletal muscle wasting. These findings uncover a role for SNARK in the maintenance of skeletal muscle mass under cachexia conditions.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Sacarose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/fisiologia , Caquexia/metabolismo , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular/etiologia
10.
J Cell Biochem ; 120(1): 685-696, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256437

RESUMO

The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208 , a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/- ) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/- mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.


Assuntos
Vasos Coronários/metabolismo , Glucose/metabolismo , Isquemia/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
11.
Nat Commun ; 9(1): 3030, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072727

RESUMO

Skeletal muscle has a remarkable plasticity to adapt and remodel in response to environmental cues, such as physical exercise. Endurance exercise stimulates improvements in muscle oxidative capacity, while resistance exercise induces muscle growth. Here we show that the c-Jun N-terminal kinase (JNK) is a molecular switch that when active, stimulates muscle fibers to grow, resulting in increased muscle mass. Conversely, when muscle JNK activation is suppressed, an alternative remodeling program is initiated, resulting in smaller, more oxidative muscle fibers, and enhanced aerobic fitness. When muscle is exposed to mechanical stress, JNK initiates muscle growth via phosphorylation of the transcription factor, SMAD2, at specific linker region residues leading to inhibition of the growth suppressor, myostatin. In human skeletal muscle, this JNK/SMAD signaling axis is activated by resistance exercise, but not endurance exercise. We conclude that JNK acts as a key mediator of muscle remodeling during exercise via regulation of myostatin/SMAD signaling.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Músculos/metabolismo , Miostatina/metabolismo , Proteínas Smad/metabolismo , Adulto , Animais , Núcleo Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hipertrofia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação , Condicionamento Físico Animal , Resistência Física , Transporte Proteico , Transdução de Sinais , Proteínas Smad/antagonistas & inibidores
12.
J Gerontol A Biol Sci Med Sci ; 72(10): 1319-1326, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927764

RESUMO

Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young: n = 9; Older: n = 9). Primary findings were that fasting c-miRNA expression profiles were significantly predictive of aging, with miR-19b-3p, miR-206, and miR-486 distinguishing between age groups. Following resistance exercise, principal component analysis revealed a divergent response in expression of 10 c-miRNA, where expression profiles were upregulated in younger and downregulated in older participants. Using Ingenuity Pathway Analysis to test c-miRNA-to-mRNA interactions in skeletal muscle, it was found that response of c-miRNA to exercise was indicative of an anabolic response in younger but not older participants. These findings were corroborated with a positive association observed with the phosphorylation status of p-AktSer473 and p-S6K1Thr389 and expression of miR-19a-3p, miR-19b-3p, miR-20a-5p, miR-26b-5p, miR-143-3p, and miR-195-5p. These important findings provide compelling evidence that dysregulation of c-miRNA expression with aging may not only serve as a predictive marker, but also reflect underlying molecular mechanisms resulting in age-associated declines in skeletal muscle mass, increased fat mass, and "anabolic resistance."


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Treinamento Resistido , Idoso , Antropometria , Biomarcadores/metabolismo , Composição Corporal , Humanos , Masculino , Valor Preditivo dos Testes , Adulto Jovem
13.
J Clin Invest ; 126(2): 560-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26690705

RESUMO

The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age.


Assuntos
Envelhecimento/metabolismo , Apoptose , Regulação Enzimológica da Expressão Gênica , Fibras Musculares Esqueléticas/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Transdução de Sinais , Envelhecimento/genética , Envelhecimento/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Tamanho do Órgão/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
14.
FASEB J ; 28(9): 4133-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928197

RESUMO

Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/metabolismo , Fadiga Muscular , Músculo Esquelético/metabolismo , Adaptação Fisiológica , Adulto , Idoso , Perfilação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , MicroRNAs/genética , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Adulto Jovem
15.
Am J Physiol Regul Integr Comp Physiol ; 306(12): R925-33, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24740654

RESUMO

Increasing evidence suggests that TRB3, a mammalian homolog of Drosophila tribbles, plays an important role in cell growth, differentiation, and metabolism. In the liver, TRB3 binds and inhibits Akt activity, whereas in adipocytes, TRB3 upregulates fatty acid oxidation. In cultured muscle cells, TRB3 has been identified as a potential regulator of insulin signaling. However, little is known about the function and regulation of TRB3 in skeletal muscle in vivo. In the current study, we found that 4 wk of voluntary wheel running (6.6 ± 0.4 km/day) increased TRB3 mRNA by 1.6-fold and protein by 2.5-fold in the triceps muscle. Consistent with this finding, muscle-specific transgenic mice that overexpress TRB3 (TG) had a pronounced increase in exercise capacity compared with wild-type (WT) littermates (TG: 1,535 ± 283; WT: 644 ± 67 joules). The increase in exercise capacity in TRB3 TG mice was not associated with changes in glucose uptake or glycogen levels; however, these mice displayed a dramatic shift toward a more oxidative/fatigue-resistant (type I/IIA) muscle fiber type, including threefold more type I fibers in soleus muscles. Skeletal muscle from TRB3 TG mice had significantly decreased PPARα expression, twofold higher levels of miR208b and miR499, and corresponding increases in the myosin heavy chain isoforms Myh7 and Myb7b, which encode these microRNAs. These findings suggest that TRB3 regulates muscle fiber type via a peroxisome proliferator-activated receptor-α (PPAR-α)-regulated miR499/miR208b pathway, revealing a novel function for TRB3 in the regulation of skeletal muscle fiber type and exercise capacity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Tolerância ao Exercício/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Regulação para Cima/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Modelos Animais , Cadeias Pesadas de Miosina/metabolismo , PPAR alfa/metabolismo
16.
Am J Physiol Endocrinol Metab ; 305(3): E429-38, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23757406

RESUMO

Impaired visceral white adipose tissue (WAT) metabolism has been implicated in the pathogenesis of several lifestyle-related disease states, with diminished expression of several WAT mitochondrial genes reported in both insulin-resistant humans and rodents. We have used rat models selectively bred for low- (LCR) or high-intrinsic running capacity (HCR) that present simultaneously with divergent metabolic phenotypes to test the hypothesis that oxidative enzyme expression is reduced in epididymal WAT from LCR animals. Based on this assumption, we further hypothesized that short-term exercise training (6 wk of treadmill running) would ameliorate this deficit. Approximately 22-wk-old rats (generation 22) were studied. In untrained rats, the abundance of mitochondrial respiratory complexes I-V, citrate synthase (CS), and PGC-1 was similar for both phenotypes, although CS activity was greater than 50% in HCR (P = 0.09). Exercise training increased CS activity in both phenotypes but did not alter mitochondrial protein content. Training increased the expression and phosphorylation of proteins with roles in ß-adrenergic signaling, including ß3-adrenergic receptor (16% increase in LCR; P < 0.05), NOR1 (24% decrease in LCR, 21% decrease in HCR; P < 0.05), phospho-ATGL (25% increase in HCR; P < 0.05), perilipin (25% increase in HCR; P < 0.05), CGI-58 (15% increase in LCR; P < 0.05), and GLUT4 (16% increase in HCR; P < 0.0001). A training effect was also observed for phospho-p38 MAPK (12% decrease in LCR, 20% decrease in HCR; P < 0.05) and phospho-JNK (29% increase in LCR, 20% increase in HCR; P < 0.05). We conclude that in the LCR-HCR model system, mitochondrial protein expression in WAT is not affected by intrinsic running capacity or exercise training. However, training does induce alterations in the activity and expression of several proteins that are essential to the intracellular regulation of WAT metabolism.


Assuntos
Tecido Adiposo Branco/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/genética , Resistência Física/fisiologia , Corrida/fisiologia , Animais , Western Blotting , Peso Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/genética , Lipólise/fisiologia , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Ratos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
17.
Diabetes ; 62(8): 2717-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23610057

RESUMO

Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are "exercise-resistant" and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-ß signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.


Assuntos
Adaptação Fisiológica/fisiologia , Tolerância ao Exercício/fisiologia , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Animais , Metabolismo Energético/fisiologia , Feminino , Glicogênio/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Aptidão Física/fisiologia , Ratos , Triglicerídeos/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 304(5): H729-39, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262135

RESUMO

Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and ß-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV ß-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced ß2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype.


Assuntos
Envelhecimento/fisiologia , Circulação Coronária/fisiologia , Tolerância ao Exercício/fisiologia , Coração/fisiologia , Remodelação Ventricular/fisiologia , Envelhecimento/genética , Animais , Fatores Biológicos/metabolismo , Tolerância ao Exercício/genética , Feminino , Fibrose/fisiopatologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Síndrome Metabólica/genética , Síndrome Metabólica/fisiopatologia , Microcirculação/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 300(4): R835-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270346

RESUMO

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


Assuntos
Mitocôndrias Musculares/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico/fisiologia , Corrida/fisiologia , Animais , Feminino , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/ultraestrutura , Modelos Animais , Fibras Musculares de Contração Rápida/ultraestrutura , Músculo Esquelético/ultraestrutura , Oxirredução , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Ratos , Ratos Endogâmicos
20.
Am J Physiol Regul Integr Comp Physiol ; 300(1): R175-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21048074

RESUMO

We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased ß2-adrenergic receptor (ß2-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of ß2-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.


Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/genética , Resistência Física/fisiologia , Animais , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Modelos Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Ratos , Ratos Endogâmicos , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...