Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Genet Med ; 26(5): 101097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334070

RESUMO

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Assuntos
Mutação com Perda de Função , Lisossomos , Transtornos do Neurodesenvolvimento , Humanos , Lisossomos/metabolismo , Lisossomos/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Masculino , Mutação com Perda de Função/genética , Feminino , Alelos , Criança , Pré-Escolar , Lactente , Fenótipo , Linhagem
2.
J Clin Med ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002677

RESUMO

Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.

3.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582359

RESUMO

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Assuntos
Luxação do Quadril , Osteosclerose , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Via de Sinalização Wnt/genética , Osteosclerose/genética , beta Catenina/metabolismo
4.
Am J Med Genet A ; 191(9): 2274-2289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37387251

RESUMO

Atypical progeroid syndromes (APS) are premature aging syndromes caused by pathogenic LMNA missense variants, associated with unaltered expression levels of lamins A and C, without accumulation of wild-type or deleted prelamin A isoforms, as observed in Hutchinson-Gilford progeria syndrome (HGPS) or HGPS-like syndromes. A specific LMNA missense variant, (p.Thr528Met), was previously identified in a compound heterozygous state in patients affected by APS and severe familial partial lipodystrophy, whereas heterozygosity was recently identified in patients affected by Type 2 familial partial lipodystrophy. Here, we report four unrelated boys harboring homozygosity for the p.Thr528Met, variant who presented with strikingly homogeneous APS clinical features, including osteolysis of mandibles, distal clavicles and phalanges, congenital muscular dystrophy with elevated creatine kinase levels, and major skeletal deformities. Immunofluorescence analyses of patient-derived primary fibroblasts showed a high percentage of dysmorphic nuclei with nuclear blebs and typical honeycomb patterns devoid of lamin B1. Interestingly, in some protrusions emerin or LAP2α formed aberrant aggregates, suggesting pathophysiology-associated clues. These four cases further confirm that a specific LMNA variant can lead to the development of strikingly homogeneous clinical phenotypes, in these particular cases a premature aging phenotype with major musculoskeletal involvement linked to the homozygous p.Thr528Met variant.


Assuntos
Senilidade Prematura , Disostoses , Lipodistrofia Parcial Familiar , Distrofias Musculares , Progéria , Humanos , Síndrome , Lipodistrofia Parcial Familiar/complicações , Clavícula/metabolismo , Clavícula/patologia , Mutação , Progéria/patologia , Disostoses/complicações , Lamina Tipo A/genética
5.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931244

RESUMO

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Histonas/metabolismo , Doenças Neuroinflamatórias
6.
Genes (Basel) ; 13(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36360192

RESUMO

Germline pathogenic and likely pathogenic (P/LP) variants in CHEK2 have been associated with increased prostate cancer (PrCa) risk. Our objective was to analyze their occurrence in Croatian PrCa men and to evaluate the clinical characteristics of P/LP variant carriers. Therefore, we analyzed CHEK2 in 150 PrCa patients unselected for age of onset, family history of PrCa or clinical outcome, and the frequency of identified variants was compared to findings in 442 cancer-free men, of Croatian ancestry. We identified four PrCa cases harboring a P/LP variant in CHEK2 (4/150, 2.67%), which reached a statistical significance (p = 0.004) as compared to the control group. Patients with P/LP variants in CHEK2 developed PrCa almost 9 years earlier than individuals with CHEK2 wild-type alleles (8.9 years; p = 0.0198) and had an increased risk for lymph node involvement (p = 0.0047). No association was found between CHEK2 status and further clinical characteristics, including the Gleason score, occurrence of aggressive PrCa, the tumor or metastasis stage. However, carriers of the most common P/LP CHEK2 variant, the c.1100delC, p.Thr367Metfs15*, had a significantly higher Gleason score (p = 0.034), risk for lymph node involvement (p = 0.0001), and risk for developing aggressive PrCa (p = 0.027). Thus, in a Croatian population, CHEK2 P/LP variant carriers were associated with increased risk for early onset prostate cancer, and carriers of the c.1100delC, p.Thr367Metfs15* had increased risk for aggressive PrCa.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , Masculino , Humanos , Croácia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Gradação de Tumores , Quinase do Ponto de Checagem 2/genética
7.
Cancer Epidemiol Biomarkers Prev ; 31(9): 1769-1779, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700037

RESUMO

BACKGROUND: Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS: In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS: In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS: Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT: This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Metilação de DNA , Ácido Fólico , Estudo de Associação Genômica Ampla , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único , Seminoma/genética , Seminoma/metabolismo , Seminoma/patologia , Neoplasias Testiculares/genética
8.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454886

RESUMO

BACKGROUND: Previous studies have shown that different alcoholic beverage types impact prostate cancer (PCa) clinical outcomes differently. However, intake patterns of specific alcoholic beverages for PCa status are understudied. The study's objective is to evaluate intake patterns of total alcohol and the three types of beverage (beer, wine, and spirits) by the PCa risk and aggressiveness status. METHOD: This is a cross-sectional study using 10,029 men (4676 non-PCa men and 5353 PCa patients) with European ancestry from the PCa consortium. Associations between PCa status and alcohol intake patterns (infrequent, light/moderate, and heavy) were tested using multinomial logistic regressions. RESULTS: Intake frequency patterns of total alcohol were similar for non-PCa men and PCa patients after adjusting for demographic and other factors. However, PCa patients were more likely to drink wine (light/moderate, OR = 1.11, p = 0.018) and spirits (light/moderate, OR = 1.14, p = 0.003; and heavy, OR = 1.34, p = 0.04) than non-PCa men. Patients with aggressive PCa drank more beer than patients with non-aggressive PCa (heavy, OR = 1.48, p = 0.013). Interestingly, heavy wine intake was inversely associated with PCa aggressiveness (OR = 0.56, p = 0.009). CONCLUSIONS: The intake patterns of some alcoholic beverage types differed by PCa status. Our findings can provide valuable information for developing custom alcohol interventions for PCa patients.

9.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293990

RESUMO

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Assuntos
Canais de Cálcio Tipo N , Epilepsia , Idade de Início , Animais , Cálcio , Canais de Cálcio , Canais de Cálcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neurônios
10.
Eur J Hum Genet ; 30(5): 611-618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304602

RESUMO

PAN2 encodes a subunit of a deadenylation complex with important functions in mRNA stability and post-transcriptional regulation of gene expression. A homozygous frameshift deletion in PAN2 was reported in a single affected individual with developmental delay and multiple congenital anomalies. Here, we describe five additional individuals from three unrelated families with homozygous predicted loss-of-function variants in PAN2. The affected individuals presented with significant overlap in their clinical features, including mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck. Our data confirm that biallelic predicted loss-of-function variants in PAN2 cause a syndrome with multiple congenital anomalies, and suggest an important role of mRNA polyA tail length for proper organ formation.


Assuntos
Anormalidades Múltiplas , Nanismo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Anormalidades Múltiplas/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/genética , Fenótipo , RNA Mensageiro/metabolismo
11.
J Exp Clin Cancer Res ; 41(1): 46, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109899

RESUMO

Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.


Assuntos
Transdiferenciação Celular/imunologia , Neoplasias da Próstata/fisiopatologia , Humanos , Masculino
12.
Am J Med Genet A ; 188(5): 1630-1634, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037378

RESUMO

Werner syndrome (WS) is an extremely rare, autosomal recessive segmental progeroid disorder caused by biallelic pathogenic variants in the WRN, which encodes a multifunctional nuclear protein that belongs to the RecQ family of DNA helicases. Despite extensive research on WS in the last years, the population-specific mutational spectrum still needs to be elucidated. Moreover, there is an evident lack of detailed clinical descriptions accompanied with photographs of affected individuals. Here, we report a consanguineous Lebanese family in whom we identified a pathogenic homozygous nonsense variant c.1111G>T, p.Glu371* in the WRN. The index individual, at the age of 54 years, was suspected to have WS due to a history of early-onset cataracts, premature hair loss and graying, chronic nonhealing leg ulcers, Achilles' tendon calcifications, type 2 diabetes mellitus, dyslipidemia, hypothyroidism, and premature coronary artery disease. His four sisters, three of which deceased in the fifth decade, had clinical signs suggestive of WS. Moreover, his daughter, aged 23 years, had short stature, hair loss and flat feet. Taken together, we report a detailed clinical course of disease in several affected members of a consanguineous family, which is additionally documented by photographs.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome de Werner , Alopecia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RecQ Helicases/genética , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Adulto Jovem
13.
Am J Med Genet A ; 188(1): 216-223, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611991

RESUMO

Pathogenic biallelic variants in POL3RA have been associated with different disorders characterized by progressive neurological deterioration. These include the 4H leukodystrophy syndrome (hypomyelination, hypogonadotropic hypogonadism, and hypodontia) and adolescent-onset progressive spastic ataxia, as well as Wiedemann-Rautenstrauch syndrome (WRS), a recognizable neonatal progeroid syndrome. The phenotypic differences between these disorders are thought to occur mainly due to different functional effects of underlying POLR3A variants. Here we present the detailed clinical course of a 37-year-old woman in whom we identified a homozygous synonymous POLR3A variant c.3336G>A resulting in leaky splicing r.[3336ins192, =, 3243_3336del94]. She presented at birth with intrauterine growth retardation, lipodystrophy, muscular hypotonia, and several WRS-like facial features, albeit without sparse hair and prominent scalp veins. She had no signs of developmental delay or intellectual disability. Over the years, above characteristic facial features, she showed severe postnatal growth retardation, global lipodystrophy, joint contractures, thoracic hypoplasia, scoliosis, anodontia, spastic quadriplegia, bilateral hearing loss, aphonia, hypogonadotropic hypogonadism, and cerebellar peduncles hyperintensities in brain imaging. These manifestations partially overlap the clinical features of the previously reported POLR3A-associated disorders, mostly mimicking the WRS. Thus, our study expands the POLR3A-mediated phenotypic spectrum and suggests existence of a phenotypic continuum underlying biallelic POLR3A variants.


Assuntos
Atrofia Óptica , Progéria , Ataxias Espinocerebelares , Adolescente , Adulto , Ataxia , Feminino , Humanos , Recém-Nascido , Progéria/patologia , RNA Polimerase III/genética
14.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34907471

RESUMO

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Adolescente , Processamento Alternativo/genética , Substituição de Aminoácidos , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Códon sem Sentido , Doenças em Gêmeos/diagnóstico por imagem , Doenças em Gêmeos/genética , Feminino , Mutação da Fase de Leitura , Estudos de Associação Genética , Variação Genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Fenótipo , RNA-Seq , Gêmeos Monozigóticos , Adulto Jovem
15.
Clin Genet ; 100(6): 766-770, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34490615

RESUMO

Neurological symptoms are frequent and often a leading feature of childhood-onset mitochondrial disorders (MD) but the exact incidence of MD in unselected neuropediatric patients is unknown. Their early detection is desirable due to a potentially rapid clinical decline and the availability of management options. In 491 children with neurological symptoms, a comprehensive diagnostic work-up including exome sequencing was performed. The success rate in terms of a molecular genetic diagnosis within our cohort was 51%. Disease-causing variants in a mitochondria-associated gene were detected in 12% of solved cases. In order to facilitate the clinical identification of MDs within neuropediatric cohorts, we have created an easy-to-use bedside-tool, the MDC-NP. In our cohort, the MDC-NP predicted disease conditions related to MDs with a sensitivity of 0.83, and a specificity of 0.96.


Assuntos
Predisposição Genética para Doença , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/genética , Fatores Etários , Alelos , Criança , Estudos de Coortes , Genes Mitocondriais , Estudos de Associação Genética , Genótipo , Humanos , Doenças Mitocondriais/diagnóstico , Mutação , Doenças do Sistema Nervoso/diagnóstico , Fenótipo , Prevalência , Prognóstico
16.
Neurogenetics ; 22(4): 263-269, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218362

RESUMO

ANK3 encodes multiple isoforms of ankyrin-G, resulting in variegated tissue expression and function, especially regarding its role in neuronal development. Based on the zygosity, location, and type, ANK3 variants result in different neurodevelopmental phenotypes. Autism spectrum disorder has been associated with heterozygous missense variants in ANK3, whereas a more severe neurodevelopmental phenotype is caused by isoform-dependent, autosomal-dominant, or autosomal-recessive loss-of-function variants. Here, we present four individuals affected by a variable neurodevelopmental phenotype harboring a heterozygous frameshift or nonsense variant affecting all ANK3 transcripts. Thus, we provide further evidence of an isoform-based phenotypic continuum underlying ANK3-associated pathologies and expand its phenotypic spectrum.


Assuntos
Anquirinas/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Criança , Humanos , Perda de Heterozigosidade , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Isoformas de Proteínas/genética
17.
Neonatology ; 118(4): 454-461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237744

RESUMO

INTRODUCTION: Monogenic diseases play an important role in critically ill neonates and infants treated in the intensive care unit. This study aimed to determine the diagnostic yield of whole-exome sequencing (WES) for monogenic diseases and identify phenotypes more likely associated with a genetic etiology. METHODS: From March 2017 to 2020, a comprehensive diagnostic workup including WES in a single academic center was performed in 61 unrelated, critically ill neonates and infants with an unknown underlying disease within the first year of life. We conducted 59 trio-WES, 1 duo-WES, and 1 single-WES analyses. Symptoms were classified according to the Human Phenotype Ontology. RESULTS: The overall molecular genetic diagnostic rate within our cohort was 46% (28/61) and 50% (15/30) in the subgroup of preterm neonates. Identifying the genetic cause of disease facilitates individualized management in the majority of patients. A positive or negative predictive power of specific clinical features for a genetic diagnosis could not be observed. CONCLUSION: WES is a powerful noninvasive diagnostic tool in critically ill neonates and infants with a high diagnostic rate. We recommend initiating WES as early as possible due to the impact on management and family counseling. Recommendations regarding the clinical utility of WES in critically ill neonates and infants should not be based on the phenotype alone. Here, we present a clinical workflow for the application of WES for critically ill neonates and infants in an interdisciplinary setting.


Assuntos
Estado Terminal , Unidades de Terapia Intensiva , Testes Genéticos , Humanos , Lactente , Fenótipo , Sequenciamento do Exoma
18.
Nat Commun ; 12(1): 4487, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301922

RESUMO

Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Testiculares/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Redes Reguladoras de Genes/genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Metanálise como Assunto , Neoplasias Embrionárias de Células Germinativas/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Testiculares/metabolismo
19.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909990

RESUMO

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Assuntos
Anormalidades Múltiplas/patologia , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/patologia , Metilação de DNA , Epigênese Genética , Transtornos do Crescimento/patologia , Comunicação Interventricular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/genética , Feminino , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética
20.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268356

RESUMO

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Assuntos
Histonas , Doenças Neurodegenerativas , Animais , Fatores de Transcrição Forkhead/genética , Mutação em Linhagem Germinativa , Histonas/genética , Histonas/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...