Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352344

RESUMO

Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWS::FLI. EWS::FLI is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWS portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWS::FLI. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI, DBD-α4 helix, is critical for the transcription function of EWS::FLI. In this study, we aimed to understand the mechanism by which the DBD-α4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatin marks, genome binding, and gene expression in cells expressing EWS::FLI constructs with and without DBD-α4 helix. Our studies revealed DBD-α4 helix is crucial for cooperative binding of EWS::FLI at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWS::FLI such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.

2.
Nat Cell Biol ; 25(2): 285-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658220

RESUMO

Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.


Assuntos
Sarcoma de Ewing , Criança , Humanos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética
3.
J Clin Oncol ; 41(11): 2098-2107, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36669140

RESUMO

PURPOSE: Monoclonal antibodies directed against insulin-like growth factor-1 receptor (IGF-1R) have shown activity in patients with relapsed Ewing sarcoma. The primary objective of Children's Oncology Group trial AEWS1221 was to determine if the addition of the IGF-1R monoclonal antibody ganitumab to interval-compressed chemotherapy improves event-free survival (EFS) in patients with newly diagnosed metastatic Ewing sarcoma. METHODS: Patients were randomly assigned 1:1 at enrollment to standard arm (interval-compressed vincristine/doxorubicin/cyclophosphamide alternating once every 2 weeks with ifosfamide/etoposide = VDC/IE) or to experimental arm (VDC/IE with ganitumab at cycle starts and as monotherapy once every 3 weeks for 6 months after conventional therapy). A planned sample size of 300 patients was projected to provide 81% power to detect an EFS hazard ratio of 0.67 or smaller for the experimental arm compared with the standard arm with a one-sided α of .025. RESULTS: Two hundred ninety-eight eligible patients enrolled (148 in standard arm; 150 in experimental arm). The 3-year EFS estimates were 37.4% (95% CI, 29.3 to 45.5) for the standard arm and 39.1% (95% CI, 31.3 to 46.7) for the experimental arm (stratified EFS-event hazard ratio for experimental arm 1.00; 95% CI, 0.76 to 1.33; 1-sided, P = .50). The 3-year overall survival estimates were 59.5% (95% CI, 50.8 to 67.3) for the standard arm and 56.7% (95% CI, 48.3 to 64.2) for the experimental arm. More cases of pneumonitis after radiation involving thoracic fields and nominally higher rates of febrile neutropenia and ALT elevation were reported on the experimental arm. CONCLUSION: Ganitumab added to interval-compressed chemotherapy did not significantly reduce the risk of EFS event in patients with newly diagnosed metastatic Ewing sarcoma, with outcomes similar to prior trials without IGF-1R inhibition or interval compression. The addition of ganitumab may be associated with increased toxicity.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Criança , Sarcoma de Ewing/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ósseas/patologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Ciclofosfamida/efeitos adversos , Etoposídeo/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/efeitos adversos , Vincristina/efeitos adversos , Anticorpos Monoclonais/efeitos adversos , Intervalo Livre de Doença
4.
Br J Cancer ; 127(12): 2220-2226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221002

RESUMO

BACKGROUND: Ewing sarcoma (EWS) is an aggressive sarcoma with no validated molecular biomarkers. We aimed to determine the frequency of STAG2 protein loss by immunohistochemistry (IHC) and whether loss of expression is associated with outcome. METHODS: We performed a retrospective cohort study of patients with EWS enrolled to Children's Oncology Group studies. We obtained unstained slides from 235 patients and DNA for sequencing from 75 patients. STAG2 expression was tested for association with clinical features and survival was estimated using Kaplan-Meier methods with log-rank tests. RESULTS: In total, 155 cases passed quality control for STAG2 IHC. STAG2 expression in 20/155 cases could not be categorised with the limited available tissue, leaving 135 patients with definitive STAG2 IHC. In localised and metastatic disease, STAG2 was lost in 29/108 and 6/27 cases, respectively. Among patients with IHC and sequencing, 0/17 STAG2 expressing cases had STAG2 mutations, and 2/7 cases with STAG2 loss had STAG2 mutations. Among patients with localised disease, 5-year event-free survival was 54% (95% CI 34-70%) and 75% (95% CI 63-84%) for patients with STAG2 loss vs. expression (P = 0.0034). CONCLUSION: STAG2 loss of expression is identified in a population of patients without identifiable STAG2 mutations and carries a poor prognosis.


Assuntos
Sarcoma de Ewing , Criança , Humanos , Prognóstico , Sarcoma de Ewing/genética , Estudos Retrospectivos , Proteínas de Ciclo Celular
5.
NPJ Precis Oncol ; 6(1): 65, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115869

RESUMO

The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.

6.
Nucleic Acids Res ; 50(17): 9814-9837, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36124657

RESUMO

Ewing sarcoma is a prototypical fusion transcription factor-associated pediatric cancer that expresses EWS/FLI or a highly related FET/ETS chimera. EWS/FLI dysregulates transcription to induce and maintain sarcomagenesis, but the mechanisms utilized are not fully understood. We therefore sought to define the global effects of EWS/FLI on chromatin conformation and transcription in Ewing sarcoma cells using a well-validated 'knock-down/rescue' model of EWS/FLI function in combination with next generation sequencing assays to evaluate how the chromatin landscape changes with loss, and recovery, of EWS/FLI expression. We found that EWS/FLI (and EWS/ERG) genomic localization is largely conserved across multiple patient-derived Ewing sarcoma cell lines. This EWS/FLI binding signature is associated with establishment of topologically-associated domain (TAD) boundaries, compartment activation, enhancer-promoter looping that involve both intra- and inter-TAD interactions, and gene activation. In addition, EWS/FLI co-localizes with the loop-extrusion factor cohesin to promote chromatin loops and TAD boundaries. Importantly, local chromatin features provide the basis for transcriptional heterogeneity in regulation of direct EWS/FLI target genes across different Ewing sarcoma cell lines. These data demonstrate a key role of EWS/FLI in mediating genome-wide changes in chromatin configuration and support the notion that fusion transcription factors serve as master regulators of three-dimensional reprogramming of chromatin.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing , Linhagem Celular Tumoral , Criança , Cromatina/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
7.
Mol Cancer Res ; 20(7): 1035-1046, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298000

RESUMO

Expression of the fusion oncoprotein EWS/FLI causes Ewing sarcoma, an aggressive pediatric tumor characterized by widespread epigenetic deregulation. These epigenetic changes are targeted by novel lysine-specific demethylase-1 (LSD1) inhibitors, which are currently in early-phase clinical trials. Single-agent-targeted therapy often induces resistance, and successful clinical development requires knowledge of resistance mechanisms, enabling the design of effective combination strategies. Here, we used a genome-scale CRISPR-Cas9 loss-of-function screen to identify genes whose knockout (KO) conferred resistance to the LSD1 inhibitor SP-2509 in Ewing sarcoma cell lines. Multiple genes required for mitochondrial electron transport chain (ETC) complexes III and IV function were hits in our screen. We validated this finding using genetic and chemical approaches, including CRISPR KO, ETC inhibitors, and mitochondrial depletion. Further global transcriptional profiling revealed that altered complex III/IV function disrupted the oncogenic program mediated by EWS/FLI and LSD1 and blunted the transcriptomic response to SP-2509. IMPLICATIONS: These findings demonstrate that mitochondrial dysfunction modulates SP-2509 efficacy and suggest that new therapeutic strategies combining LSD1 with agents that prevent mitochondrial dysfunction may benefit patients with this aggressive malignancy.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
8.
PLoS Comput Biol ; 17(10): e1008755, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662337

RESUMO

MicroRNA (miRNA)-based therapies are an emerging class of targeted therapeutics with many potential applications. Ewing Sarcoma patients could benefit dramatically from personalized miRNA therapy due to inter-patient heterogeneity and a lack of druggable (to this point) targets. However, because of the broad effects miRNAs may have on different cells and tissues, trials of miRNA therapies have struggled due to severe toxicity and unanticipated immune response. In order to overcome this hurdle, a network science-based approach is well-equipped to evaluate and identify miRNA candidates and combinations of candidates for the repression of key oncogenic targets while avoiding repression of essential housekeeping genes. We first characterized 6 Ewing sarcoma cell lines using mRNA sequencing. We then estimated a measure of tumor state, which we term network potential, based on both the mRNA gene expression and the underlying protein-protein interaction network in the tumor. Next, we ranked mRNA targets based on their contribution to network potential. We then identified miRNAs and combinations of miRNAs that preferentially act to repress mRNA targets with the greatest influence on network potential. Our analysis identified TRIM25, APP, ELAV1, RNF4, and HNRNPL as ideal mRNA targets for Ewing sarcoma therapy. Using predicted miRNA-mRNA target mappings, we identified miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p as candidate optimal miRNAs for preferential repression of these targets. Ultimately, our work, as exemplified in the case of Ewing sarcoma, describes a novel pipeline by which personalized miRNA cocktails can be designed to maximally perturb gene networks contributing to cancer progression.


Assuntos
RNA Mensageiro , Sarcoma de Ewing , Transcriptoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Biologia Computacional , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Medicina de Precisão , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
9.
Mol Cancer Res ; 19(11): 1795-1801, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34465585

RESUMO

Ewing sarcoma is a pediatric bone cancer defined by a chromosomal translocation fusing one of the FET family members to an ETS transcription factor. There have been seven reported chromosomal translocations, with the most recent reported over a decade ago. We now report a novel FET/ETS translocation involving FUS and ETV4 detected in a patient with Ewing sarcoma. Here, we characterized FUS/ETV4 by performing genomic localization and transcriptional regulatory studies on numerous FET/ETS fusions in a Ewing sarcoma cellular model. Through this comparative analysis, we demonstrate significant similarities across these fusions, and in doing so, validate FUS/ETV4 as a bona fide Ewing sarcoma translocation. This study presents the first genomic comparison of Ewing sarcoma-associated translocations and reveals that the FET/ETS fusions share highly similar, but not identical, genomic localization and transcriptional regulation patterns. These data strengthen the notion that FET/ETS fusions are key drivers of, and thus pathognomonic for, Ewing sarcoma. IMPLICATIONS: Identification and initial characterization of the novel Ewing sarcoma fusion, FUS/ETV4, expands the family of Ewing fusions and extends the diagnostic possibilities for this aggressive tumor of adolescents and young adults.


Assuntos
Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Translocação Genética/genética , Humanos , Recém-Nascido , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/patologia
10.
Oncogene ; 40(29): 4759-4769, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145397

RESUMO

Ewing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.


Assuntos
Oncogenes , Criança , Humanos , Fagocitose , Sarcoma de Ewing
11.
Arch Pathol Lab Med ; 145(12): 1564-1568, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769463

RESUMO

CONTEXT.­: Molecular diagnostics play an increasing role in the diagnosis of Ewing sarcoma. The type of molecular testing used in clinical practice has been poorly described. OBJECTIVE.­: To describe patterns of translocation testing for newly diagnosed Ewing sarcoma. DESIGN.­: Children's Oncology Group (COG) trial AEWS1221 was a phase III randomized trial enrolling patients with newly diagnosed metastatic Ewing sarcoma from 2014 to 2019. Patients were required to have a histologic diagnosis of Ewing sarcoma, but translocation testing was not required. Sites provided types and results of any molecular diagnostics performed. RESULTS.­: Data from 305 enrolled patients were available. The most common type of molecular testing was fluorescence in situ hybridization (FISH) performed on the primary tumor (236 of 305 patients; 77.4%), with positive testing for an EWSR1 or FUS translocation in 211 (89.4%). Reverse transcription-polymerase chain reaction (RT-PCR) on the primary tumor was performed in 61 of 305 patients (20%), with positive results in 48 of 61 patients (78.7%). Next-generation sequencing was reported in 7 patients for the primary tumor and in 3 patients for metastatic sites. For all types of testing on either primary or metastatic tumor, 16 of 305 patients (5.2%) had no reported translocation testing. When evaluating all results from all testing, 44 of 305 patients (14.4%) lacked documentation of an abnormality consistent with a molecular diagnosis of Ewing sarcoma. CONCLUSIONS.­: COG sites enrolling in a Ewing sarcoma trial have high rates of testing by FISH or PCR. A small proportion of patients have no translocation testing on either primary or metastatic sites. Next-generation sequencing techniques are not yet commonly used in this context.


Assuntos
Neoplasias Ósseas , Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Criança , Humanos , Hibridização in Situ Fluorescente , Proteínas de Fusão Oncogênica/genética , Patologia Molecular , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Translocação Genética
12.
Epigenetics ; 16(4): 405-424, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32842875

RESUMO

Paediatric cancers commonly harbour quiet mutational landscapes and are instead characterized by single driver events such as the mutation of critical chromatin regulators, expression of oncohistones, or expression of oncogenic fusion proteins. These events ultimately promote malignancy through disruption of normal gene regulation and development. The driver protein in Ewing sarcoma, EWS/FLI, is an oncogenic fusion and transcription factor that reshapes the enhancer landscape, resulting in widespread transcriptional dysregulation. Lysine-specific demethylase 1 (LSD1) is a critical functional partner for EWS/FLI as inhibition of LSD1 reverses the transcriptional activity of EWS/FLI. However, how LSD1 participates in fusion-directed epigenomic regulation and aberrant gene activation is unknown. We now show EWS/FLI causes dynamic rearrangement of LSD1 and we uncover a role for LSD1 in gene activation through colocalization at EWS/FLI binding sites throughout the genome. LSD1 is integral to the establishment of Ewing sarcoma super-enhancers at GGAA-microsatellites, which ubiquitously overlap non-microsatellite loci bound by EWS/FLI. Together, we show that EWS/FLI induces widespread changes to LSD1 distribution in a process that impacts the enhancer landscape throughout the genome.


Assuntos
Cromatina , Lisina , Linhagem Celular Tumoral , Criança , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo
13.
J Vis Exp ; (160)2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32658189

RESUMO

Many cancers are characterized by chromosomal translocations which result in the expression of oncogenic fusion transcription factors. Typically, these proteins contain an intrinsically disordered domain (IDD) fused with the DNA-binding domain (DBD) of another protein and orchestrate widespread transcriptional changes to promote malignancy. These fusions are often the sole recurring genomic aberration in the cancers they cause, making them attractive therapeutic targets. However, targeting oncogenic transcription factors requires a better understanding of the mechanistic role that low-complexity, IDDs play in their function. The N-terminal domain of EWSR1 is an IDD involved in a variety of oncogenic fusion transcription factors, including EWS/FLI, EWS/ATF, and EWS/WT1. Here, we use RNA-sequencing to investigate the structural features of the EWS domain important for transcriptional function of EWS/FLI in Ewing sarcoma. First shRNA-mediated depletion of the endogenous fusion from Ewing sarcoma cells paired with ectopic expression of a variety of EWS-mutant constructs is performed. Then RNA-sequencing is used to analyze the transcriptomes of cells expressing these constructs to characterize the functional deficits associated with mutations in the EWS domain. By integrating the transcriptomic analyses with previously published information about EWS/FLI DNA binding motifs, and genomic localization, as well as functional assays for transforming ability, we were able to identify structural features of EWS/FLI important for oncogenesis and define a novel set of EWS/FLI target genes critical for Ewing sarcoma. This paper demonstrates the use of RNA-sequencing as a method to map the structure-function relationship of the intrinsically disordered domain of oncogenic transcription factors.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/química , Proteína EWS de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Sítios de Ligação , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Humanos , Mutação , Proteínas de Fusão Oncogênica/genética , Domínios Proteicos , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
14.
iScience ; 23(7): 101293, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32623338

RESUMO

Advances in the treatment of Ewing's sarcoma (EWS) are desperately needed, particularly in the case of metastatic disease. A deeper understanding of collateral sensitivity, where the evolution of therapeutic resistance to one drug aligns with sensitivity to another drug, may improve our ability to effectively target this disease. For the first time in a solid tumor, we produced a temporal collateral sensitivity map that demonstrates the evolution of collateral sensitivity and resistance in EWS. We found that the evolution of collateral resistance was predictable with some drugs but had significant variation in response to other drugs. Using this map of temporal collateral sensitivity in EWS, we can see that the path toward collateral sensitivity is not always repeatable, nor is there always a clear trajectory toward resistance or sensitivity. Identifying transcriptomic changes that accompany these states of transient collateral sensitivity could improve treatment planning for patients with EWS.

15.
Oncotarget ; 11(19): 1691-1704, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477459

RESUMO

Ewing sarcoma (ES) is a malignant pediatric bone and soft tissue tumor. Patients with metastatic ES have a dismal outcome which has not been improved in decades. The major challenge in the treatment of metastatic ES is the lack of specific targets and rational combinatorial therapy. We recently found that protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is specifically highly expressed in ES and promotes tumor growth and metastasis in ES. In the current investigation, we show that PPP1R1A regulates ES cell cycle progression in G1/S phase by down-regulating cell cycle inhibitors p21Cip1 and p27Kip1, which leads to retinoblastoma (Rb) protein hyperphosphorylation. In addition, we show that PPP1R1A promotes normal transcription of histone genes during cell cycle progression. Importantly, we demonstrate a synergistic/additive effect of the combinatorial therapy of PPP1R1A and insulin-like growth factor 1 receptor (IGF-1R) inhibition on decreasing ES cell proliferation and migration in vitro and limiting xenograft tumor growth and metastasis in vivo. Taken together, our findings suggest a role of PPP1R1A as an ES specific cell cycle modulator and that simultaneous targeting of PPP1R1A and IGF-1R pathways is a promising specific and effective strategy to treat both primary and metastatic ES.

16.
Sarcoma ; 2020: 3498549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488267

RESUMO

Advances in molecular diagnostics have identified subsets of Ewing and Ewing-like sarcomas driven by variant translocations with unique biology. It is likely that patients with these tumours will have different clinical features and therapeutic outcomes. Nevertheless, the management of these patients both locally and within cooperative group trials depends on the local pathological diagnosis. It is not known what molecular diagnostic approaches are employed by local pathologists or if the exact translocation is commonly determined. In addition, it is not known what therapeutic approaches are employed for these patients or what cooperative trials are deemed appropriate for these patients by expert consensus. To answer these questions, we performed an international survey of oncologists and pathologists to better understand the diagnostic approaches used to identify variant translocations and the influence the findings have on therapy and clinical trial eligibility. An online survey was distributed to oncologists and pathologists primarily in North America. A total of 141 surveys were completed, representing a 28% response rate. The majority of respondents considered EWSR1-ETS gene family translocations (range 61-96%) to be Ewing sarcoma and would include them on the primary arm of a Ewing sarcoma clinical trial. There was a lack of consensus on how to classify and stratify BCOR-CCNB3, CIC-DUX4, and EWSR1+ with non-ETS partner fusions. Most respondents were either unsure how their institution tested, or their institution did not perform the test. In cases with atypical Ewing morphology, most respondents favoured additional fusion transcript testing. There is a lack of consensus regarding the classification and stratification of rare molecular subtypes in Ewing sarcoma. It is not clear how these alternative translocations have impacted outcomes for past clinical studies. This suggests a need for molecular confirmation of diagnoses and centralized or minimum standardization of testing for future trial enrolment.

17.
Cancer Med ; 8(18): 7924-7930, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670911

RESUMO

BACKGROUND: There are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks. METHODS: Using a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives. RESULTS: Cancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives. CONCLUSIONS: This analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives.


Assuntos
Família , Segunda Neoplasia Primária/epidemiologia , Segunda Neoplasia Primária/etiologia , Sarcoma de Ewing/epidemiologia , Humanos , Masculino , Vigilância da População , Modelos de Riscos Proporcionais , Sistema de Registros , Medição de Risco , Fatores de Risco , Utah/epidemiologia
18.
J Clin Oncol ; 37(34): 3192-3202, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553693

RESUMO

PURPOSE: The R2Pulm trial was conducted to evaluate the effect of busulfan-melphalan high-dose chemotherapy with autologous stem-cell rescue (BuMel) without whole-lung irradiation (WLI) on event-free survival (main end point) and overall survival, compared with standard chemotherapy with WLI in Ewing sarcoma (ES) presenting with pulmonary and/or pleural metastases. METHODS: From 2000 to 2015, we enrolled patients younger than 50 years of age with newly diagnosed ES and with only pulmonary or pleural metastases. Patients received chemotherapy with six courses of vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) and one course of vincristine, dactinomycin, and ifosfamide (VAI) before either BuMel or seven courses of VAI and WLI (VAI plus WLI) by randomized assignment. The analysis was conducted as intention to treat. The estimates of the hazard ratio (HR), 95% CI, and P value were corrected for the three previous interim analyses by the inverse normal method. RESULTS: Of 543 potentially eligible patients, 287 were randomly assigned to VAI plus WLI (n = 143) or BuMel (n = 144). Selected patients requiring radiotherapy to an axial primary site were excluded from randomization to avoid excess organ toxicity from interaction between radiotherapy and busulfan. Median follow-up was 8.1 years. We did not observe any significant difference in survival outcomes between treatment groups. Event-free survival was 50.6% versus 56.6% at 3 years and 43.1% versus 52.9% at 8 years, for VAI plus WLI and BuMel patients, respectively, resulting in an HR of 0.79 (95% CI, 0.56 to 1.10; P = .16). For overall survival, the HR was 1.00 (95% CI, 0.70 to 1.44; P = .99). Four patients died as a result of BuMel-related toxicity, and none died after VAI plus WLI. Significantly more patients in the BuMel arm experienced severe acute toxicities than in the VAI plus WLI arm. CONCLUSION: In ES with pulmonary or pleural metastases, there is no clear benefit from BuMel compared with conventional VAI plus WLI.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Ósseas/terapia , Transplante de Células-Tronco Hematopoéticas , Neoplasias Pulmonares/terapia , Terapia Neoadjuvante , Sarcoma de Ewing/terapia , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Progressão da Doença , Europa (Continente) , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Lactente , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/mortalidade , Recidiva Local de Neoplasia , Pneumonectomia , Intervalo Livre de Progressão , Radioterapia Adjuvante , Medição de Risco , Fatores de Risco , Sarcoma de Ewing/mortalidade , Sarcoma de Ewing/secundário , Fatores de Tempo , Transplante Autólogo , Adulto Jovem
19.
Oncotarget ; 10(39): 3865-3878, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231465

RESUMO

Ewing sarcoma is the second most common solid bone malignancy diagnosed in pediatric and young adolescent populations. Despite aggressive multi-modal treatment strategies, 5-year event-free survival remains at 75% for patients with localized disease and 20% for patients with metastases. Thus, the need for novel therapeutic options is imperative. Recent studies have focused on epigenetic misregulation in Ewing sarcoma development and potential new oncotargets for treatment. This project focused on the study of LSD2, a flavin-dependent histone demethylase found to be overexpressed in numerous cancers. We previously demonstrated that Ewing sarcoma cell lines are extremely susceptible to small molecule LSD1 blockade with SP-2509. Drug sensitivity correlated with the degree of LSD2 induction following treatment. As such, the purpose of this study was to determine the role of LSD2 in the epigenetic regulation of Ewing sarcoma, characterize genes regulated by LSD2, and examine the impact of SP-2509 drug treatment on LSD2 gene regulation. Genetic depletion (shRNA) of LSD2 significantly impaired oncogenic transformation with only a modest impact on proliferation. Transcriptional analysis of Ewing sarcoma cells following LSD2knockdown revealed modulation of genes primarily involved in metabolic regulation and nervous system development. Gene set enrichment analysis showed that SP-2509 does not impact LSD2 targeted genes. Although there are currently no small molecule agents that specifically target LSD2, our results support further investigations into agents that can inhibit this histone demethylase as a possible treatment for Ewing sarcoma.

20.
Genes Cancer ; 10(1-2): 21-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30899417

RESUMO

EWS/FLI is the pathognomic fusion oncoprotein that drives Ewing sarcoma. The amino-terminal EWS portion coordinates transcriptional regulation and the carboxy-terminal FLI portion contains an ETS DNA-binding domain. EWS/FLI acts as an aberrant transcription factor, orchestrating a complex mix of gene activation and repression, from both high affinity ETS motifs and repetitive GGAA-microsatellites. Our overarching hypothesis is that executing multi-faceted transcriptional regulation requires EWS/FLI to use distinct molecular mechanisms at different loci. Many attempts have been made to map distinct functions to specific features of the EWS domain, but described deletion mutants are either fully active or completely "dead" and other approaches have been limited by the repetitive and disordered nature of the EWS domain. Here, we use transcriptomic approaches to show an EWS/FLI mutant, called DAF, previously thought to be nonfunctional, displays context-dependent and partial transcriptional activity but lacks transforming capacity. Using transcriptomic and phenotypic anchorage-independent growth profiles of other EWS/FLI mutants coupled with reported EWS/FLI localization data, we have mapped the critical structure-function requirements of the EWS domain for EWS/FLI-mediated oncogenesis. This approach defined unique classes of EWS/FLI response elements and revealed novel structure-function relationships required for EWS/FLI activation at these response elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...