Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727347

RESUMO

The additive manufacturing (AM) of functional copper (Cu) parts is a major goal for many industries, from aerospace to automotive to electronics, because Cu has a high thermal and electrical conductivity as well as being ~10× cheaper than silver. Previous studies on AM of Cu have concentrated mainly on high-energy manufacturing processes such as Laser Powder Bed Fusion, Electron Beam Melting, and Binder Jetting. These processes all require high-temperature heat treatment in an oxygen-free environment. This paper shows an AM route to multi-layered microparts from novel nanoparticle (NP) Cu feedstocks, performed in an air environment, employing a low-power (<10 W) laser sintering process. Cu NP ink was deposited using two mechanisms, inkjet printing, and bar coating, followed by low-power laser exposure to induce particle consolidation. Initial parts were manufactured to a height of approximately 100 µm, which was achieved by multi-layer printing of 15 (bar-coated) to 300 (inkjetted) layers. There was no evidence of oxidised copper in the sintered material, but they were found to be low-density, porous structures. Nonetheless, electrical resistivity of ~28 × 10-8 Ω m was achieved. Overall, the aim of this study is to offer foundational knowledge for upscaling the process to additively manufacture Cu 3D parts of significant size via sequential nanometal ink deposition and low-power laser processing.

2.
Bioengineered ; 14(1): 2283264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986129

RESUMO

The Colombian sugarcane industry yields significant residues, categorized as agricultural and industrial. While bagasse, a widely studied industrial residue, is employed for energy recovery through combustion, agricultural residues are often left in fields. This study assesses the combustion behavior of these residues in typical collection scenarios. Additionally, it encompasses the characterization of residues from genetically modified sugarcane varieties in Colombia, potentially exhibiting distinct properties not previously documented. Non-isothermal thermogravimetrical analysis was employed to study the thermal behavior of sugarcane industrial residues (bagasse and pith) alongside agricultural residues from two different sugarcane varieties. This facilitated the determination of combustion reactivity through characteristic combustion process temperatures and technical parameters like ignition and combustion indexes. Proximate, elemental, and biochemical analyses revealed slight compositional differences. Agricultural residues demonstrated higher ash content (up to 34%) due to foreign matter adhering during harvesting, as well as soil and mud attachment during collection. Lignin content also varied, being lower for bagasse and pith, attributed to the juice extraction and milling processes that remove soluble lignin. Thermogravimetric analysis unveiled a two-stage burning process in all samples: devolatilization and char formation (~170°C), followed by char combustion (~310°C). Characteristic temperatures displayed subtle differences, with agricultural residues exhibiting lower temperatures and decomposition rates, resulting in reduced ignition and combustion indexes. This indicates heightened combustion reactivity in industrial residues, attributed to their elevated oxygen percentage, leading to more reactive functional groups and greater combustion stability compared to agricultural residues. This information is pertinent for optimizing sugarcane residues utilization in energy applications.


Weather in collection time affects composition of sugarcane agricultural residues.Combustion of sugarcane residues occurs over similar temperature ranges.Industrial residues are more reactive to combustion than agricultural residues.Overall thermal behavior of sugarcane residues depends on their composition.


Assuntos
Lignina , Saccharum , Temperatura , Oxigênio , Biomassa
3.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984019

RESUMO

Biowastes from agriculture, sewage, household wastes, and industries comprise promising resources to produce biomaterials while reducing adverse environmental effects. This study focused on utilising waste-derived materials (i.e., eggshells as a calcium source, struvite as a phosphate source, and CH3COOH as dissolution media) to produce value-added products (i.e., calcium phosphates (CaPs) derived from biomaterials) using a continuous flow hydrothermal synthesis route. The prepared materials were characterised via XRD, FEG-SEM, EDX, FTIR, and TEM analysis. Magnesium whitlockite (Mg-WH) and hydroxyapatite (HA) were produced by single-phase or biphasic CaPs by reacting struvite with either calcium nitrate tetrahydrate or an eggshell solution at 200 °C and 350 °C. Rhombohedral-shaped Mg-WH (23-720 nm) along with tube (50-290 nm diameter, 20-71 nm thickness) and/or ellipsoidal morphologies of HA (273-522 nm width) were observed at 350 °C using HNO3 or CH3COOH to prepare the eggshell and struvite solutions, and NH4OH was used as the pH buffer. The Ca/P (atomic%) ratios obtained ranged between 1.3 and 1.7, indicating the formation of Mg-WH and HA. This study showed that eggshells and struvite usage, along with CH3COOH, are promising resources as potential sustainable precursors and dissolution media, respectively, to produce CaPs with varying morphologies.

4.
Sci Total Environ ; 872: 162133, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773918

RESUMO

This paper investigates the impact of in-situ release and sequestration of CO2 on the compressive strength, volume of permeable voids, phase change, hydration reaction, and micro-morphology of cement mortars. Two Linde Type A (LTA) zeolites with micro-pore dimensions of 5 Å and 4 Å (i.e., LTA 5A and 4A zeolites) were employed as CO2 carriers herein. The incorporation of 312 wt% plain LTA 5A and 4A zeolites increases the 1-day compressive strength of the mortars. However, the use of plain LTA 5A zeolite shows marginal contributions to the 7 and 28-day compressive strengths of the mortars, whilst using plain LTA 4A zeolite even deteriorates their 7 and 28-day compressive strengths. The micro-structural analyses reveal that the addition of LTA zeolites promotes the cement hydration and improves the mean chain length (MCL) of calcium aluminosilicate hydrates (C-A-S-H). Nevertheless, this introduces numerous weak points or even a porous structure to the cement matrix. In contrast, in-situ release of CO2 via LTA zeolites significantly enhances the compressive strengths of the mortars at various ages, as this can further facilitate the hydration evolution and improve the MCL of C-A-S-H. Moreover, in-situ release of CO2 brings an incremental content of calcium carbonates. The calcium carbonate contents in the specimens containing 12 wt% LTA 5A and 4A zeolites are increased by 5.3 wt% and 4.8 wt%, respectively. This leads to homogenous distributions of calcite with a grain size of 150600 nm. Thus, LTA 5A zeolite outperforms LTA 4A zeolite with regard to CO2 uptake and the corresponding mechanical properties. This work presents in initial exploration into the application of porous pozzolanic materials in conjunction of CO2 in cement-based materials.

5.
Materials (Basel) ; 15(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079189

RESUMO

Each year about 7.6 million tons of waste glasses are landfilled without recycling, reclaiming or upcycling. Herein we have developed a solvent free upcycling method for recycled glass waste (RG) by remanufacturing it into porous recycled glass microspheres (PRGMs) with a view to explore removal of organic pollutants such as organic dyes. PRGMs were prepared via flame spheroidisation process and characterised using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Mercury Intrusion Porosimetry (MIP) analysis. PRGMs exhibited 69% porosity with overall pore volume and pore area of 0.84 cm3/g and 8.6 cm2/g, respectively (from MIP) and a surface area of 8 m2/g. Acid red 88 (AR88) and Methylene blue (MB) were explored as a model source of pollutants. Results showed that removal of AR88 and MB by PRGMs was influenced by pH of the dye solution, PRGMs doses, and dye concentrations. From the batch process experiments, adsorption and coagulation processes were observed for AR88 dye whilst MB dye removal was attributed only to adsorption process. The maximum monolayer adsorption capacity (qe) recorded for AR88, and MB were 78 mg/g and 20 mg/g, respectively. XPS and FTIR studies further confirmed that the adsorption process was due to electrostatic interaction and hydrogen bond formation. Furthermore, dye removal capacity of the PRGMs was also investigated for column adsorption process experiments. Based on the Thomas model, the calculated adsorption capacities at flow rates of 2.2 mL/min and 0.5 mL/min were 250 mg/g and 231 mg/g, respectively which were much higher than the batch scale Langmuir monolayer adsorption capacity (qe) values. It is suggested that a synergistic effect of adsorption/coagulation followed by filtration processes was responsible for the higher adsorption capacities observed from the column adsorption studies. This study also demonstrated that PRGMs produced from recycled glass waste could directly be applied to the next cyclic experiment with similar dye removal capability. Thus, highlighting the circular economy scope of using waste inorganic materials for alternate applications such as pre-screening materials in wastewater treatment applications.

6.
ACS Omega ; 7(14): 11618-11630, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449966

RESUMO

This study presents the application of a novel approach, using thermal and optical techniques, to identify the causes of poor burnout performance of Colombian stoker furnaces in the Cauca Valley State. The four coals used in these furnaces were characterized to obtain particle size distribution, particle and tapped density, elemental and proximate composition, mineral composition, and maceral content. Up to 80% incomplete combustion was noted in macro-TGA tests compared to complete combustion in a micro-TGA. Reflectance and intrinsic reactivity measurements were for chars prepared in three different particle sizes (<6, 6-19, and 19 mm), three temperatures (700, 900, and 1050 °C), and three residence times (10, 30, and 120 min). Two of the coals produced char samples with reflectance values above 6%, which matched those seen in the stoker, indicating that the furnace temperature was not the cause of poor combustion and that only two of the four coals were likely to be present in the furnace bottom ash. These tests were also able to prove that oxygen diffusion limitation was the root cause of the poor burnout where the carbon inside the furnace bottom ash was shielded from oxygen ingress through the formation of a nonpermeable slag layer. Thus, this study demonstrates the potential of both thermal profiling and optical reflectance as a tool for forensically evaluating the thermal history and operational performance of furnaces.

7.
ACS Omega ; 7(4): 3348-3358, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128245

RESUMO

Wet coal beneficiation in Colombia is prohibitive due to the high cost and scarcity of commonly used dense media. The practical value of this study is that it demonstrates for the first time that a common fertilizer, calcium nitrate, can be used in the beneficiation of low-grade Colombian coals. Three high-ash low-grade Colombian coals (Valle, Cundinamarca, and Antioquia) commonly used in Colombian sugar mill stoker furnaces were tested. Coal mineralogy and prevalence were analyzed before and after washing using mineral liberation analysis. The swelling potential of the coals was assessed using a novel application of thermal mechanical analysis (TMA) and an ash fusion oven (AFO). Calcium nitrate reduced ash levels across all size fractions, even for high-ash coals like Valle (29% to below 7%) to acceptable levels for coke manufacturing or pulverized fuel combustion. The novel use of TMA and AFO to analyze coal swelling demonstrated that swelling varies under constrained and unconstrained conditions and the small sample size allows for rapid testing of coal swelling. This study has demonstrated that the use of common fertilizers can allow beneficiation to become a processing option for low-grade coals in Official Development Assistance countries where conventional dense media is prohibitively expensive.

8.
Environ Sci Pollut Res Int ; 29(41): 61896-61904, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34559388

RESUMO

During the past few decades, the treatment of hazardous waste and toxic phenolic compounds has become a major issue in the pharmaceutical, gas/oil, dying, and chemical industries. Considering polymerization and oxidation of phenolic compounds, supercritical water oxidation (SCWO) has gained special attention. The present study objective was to synthesize a novel in situ Fe2O3nano-catalyst in a counter-current mixing reactor by supercritical water oxidation (SCWO) method to evaluate the phenol oxidation and COD reduction at different operation conditions like oxidant ratios and concentrations. Synthesized nano-catalyst was characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). TEM results revealed the maximum average particle size of 26.18 and 16.20 nm for preheated and non-preheated oxidant configuration, respectively. XRD showed the clear peaks of hematite at a 2θ value of 24, 33, 35.5, 49.5, 54, 62, and 64 for both catalysts treated preheated and non-preheated oxidant configurations. The maximum COD reduction and phenol oxidation of about 93.5% and 99.9% were observed at an oxidant ratio of 1.5, 0.75 s, 25 MPa, and 380 °C with a non-preheated H2O2 oxidant, while in situ formed Fe2O3nano-catalyst showed the maximum phenol oxidation of 99.9% at 0.75 s, 1.5 oxidant ratio, 25 MPa, and 380 °C. Similarly, in situ formed Fe2O3 catalyst presented the highest COD reduction of 97.8% at 40 mM phenol concentration, 1.0 oxidant ratio, 0.75 s residence time, 380 °C, and 25 MPa. It is concluded and recommended that SCWO is a feasible and cost-effective alternative method for the destruction of contaminants in water which showed the complete conversion of phenol within less than 1 s and 1.5 oxidant ratio.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Peróxido de Hidrogênio/química , Oxidantes , Oxirredução , Fenol/química , Fenóis , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
9.
Korean J Chem Eng ; 38(11): 2235-2246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522057

RESUMO

Catalytic pyrolysis offers a sustainable route to convert plastic wastes into fuel. We investigated the catalytic performance of coal ash (fly and bottom ash) at blending ratio of 5 wt%, and 15 wt% during pyrolysis of linear low-density polyethylene (LLDPE). The influence on activation energy and oil was characterized via thermogravimetric analyzer (TGA) and gas chromatography-mass spectrometry (GC-MS). Results have shown that 15 wt% bottom ash exhibited higher catalytic activity. The activation energy estimated by Coats-Redfern method decreased from 458.7 kJ·mol-1 to 437.8 kJ·mol-1, while the alicyclic hydrocarbon yield increased from 5.97% to 32.09%. This implies that CaO, which is abundant in bottom ash, could promote the conversion of LLDPE. Furthermore, a cradle-to-factory gate life cycle assessment was performed to investigate three scenarios (non-catalytic pyrolysis, 15 wt% fly ash, and 15 wt% bottom ash) of LLDPE conversion strategies via a normalization and weighting approach. It was found that LLDPE pyrolysis with 15 wt% bottom ash also showed the lowest normalized score of 2.83, implying the lowest environmental impact. This work has demonstrated that the recycling of coal ash, particularly bottom ash, as catalysts for LLDPE pyrolysis is effective.

10.
Bioresour Technol ; 331: 124934, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798864

RESUMO

This study investigates the potential of producing graphene oxide (GO) from biomass via green (comparatively) processing and the impact of graphitization temperature on GO quality. Our findings show that it is possible to convert biomass into highly pyrolytic biochar, followed by shear exfoliation to produce few-layer GO. However, pyrolysis temperature is key in ensuring that the biochar is suited for effective exfoliation. Low temperatures (<1000 °C) would preserve undesirable heterogenous, complex cellular structure of biomass whilst excessive temperatures (≥1300 °C) result in uncontrolled melting, coalescence and loss of functional groups. Results show 1200 °C to be the optimum graphitization temperature for miscanthus, where the resultant biochar is highly aromatic with sufficient functional groups to weaken van der Waals forces, thus facilitating exfoliation to form 6-layer GO with specific surface area of 545.3 m2g-1. This study demonstrates the potential of producing high quality, fit-for-purpose graphene materials from renewable sources.


Assuntos
Grafite , Pirólise , Biomassa , Carbono , Carvão Vegetal , Temperatura Alta , Temperatura
11.
Vaccines (Basel) ; 9(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916489

RESUMO

The highly infectious coronavirus disease 2019 (COVID-19) associated with the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to become a global pandemic. At present, the world is relying mainly on containment and hygiene-related measures, as well as repurposed drugs to control the outbreak. The development of COVID-19 vaccines is crucial for the world to return to pre-pandemic normalcy, and a collective global effort has been invested into protection against SARS-CoV-2. As of March 2021, thirteen vaccines have been approved for application whilst over 90 vaccine candidates are under clinical trials. This review focuses on the development of COVID-19 vaccines and highlights the efficacy and vaccination reactions of the authorised vaccines. The mechanisms, storage, and dosage specification of vaccine candidates at the advanced stage of development are also critically reviewed together with considerations for potential challenges. Whilst the development of a vaccine is, in general, in its infancy, current progress is promising. However, the world population will have to continue to adapt to the "new normal" and practice social distancing and hygienic measures, at least until effective vaccines are available to the general public.

12.
Ultrason Sonochem ; 73: 105519, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799111

RESUMO

Whilst graphene materials have become increasingly popular in recent years, the followed synthesis strategies face sustainability, environmental and quality challenges. This study proposes an effective, sustainable and scalable ultrasound-assisted mechano-chemical cracking method to produce graphene oxide (GO). A typical energy crop, miscanthus, was used as a carbon precursor and pyrolysed at 1200 °C before subjecting to edge-carboxylation via ball-milling in a CO2-induced environment. The resultant functionalised biochar was ultrasonically exfoliated in N-Methyl-2-pyrrolidone (NMP) and water to form GOs. The intermediate and end-products were characterised via X-ray diffraction (XRD), Raman, high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM) analyses. Results show that the proposed synthesis route can produce good quality and uniform GOs (8-10% monolayer), with up to 96% of GOs having three layers or lesser when NMP is used. Ultrasonication proved to be effective in propagating the self-repulsion of negatively-charged functional groups. Moreover, small amounts of graphene quantum dots were observed, illustrating the potential of producing various graphene materials via a single-step method. Whilst this study has only investigated utilising miscanthus, the current findings are promising and could expand the potential of producing good quality graphene materials from renewable sources via green synthesis routes.

13.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081377

RESUMO

Core-shell Zinc Oxide/Layered Double Hydroxide (ZnO@LDH) composite nanomaterials have been produced by a one-step continuous hydrothermal synthesis process, in an attempt to further enhance the application potential of layered double hydroxide (LDH) nanomaterials. The synthesis involves two hydrothermal reactors in series with the first producing a ZnO core and the second producing the Mg2Al-CO3 shell. Crystal domain length of single phase ZnO and composite ZnO was 25 nm and 42 nm, respectively. The ZnO@LDH composite had a specific surface area of 76 m2 g-1, which was larger than ZnO or Mg2Al-CO3 when produced separately (53 m2 g-1 and 58 m2 g-1, respectively). The increased specific surface area is attributed to the structural arrangement of the Mg2Al-CO3 in the composite. Platelets are envisaged to nucleate on the core and grow outwards, thus reducing the face-face stacking that occurs in conventional Mg2Al-CO3 synthesis. The Mg/Al ratio in the single phase LDH was close to the theoretical ratio of 2, but the Mg/Al ratio in the composite was 1.27 due to the formation of Zn2Al-CO3 LDH from residual Zn2+ ions. NaOH concentration was also found to influence Mg/Al ratio, with lower NaOH resulting in a lower Mg/Al ratio. NaOH concentration also affected morphology and specific surface area, with reduced NaOH content in the second reaction stage causing a dramatic increase in specific surface area (> 250 m2 g-1). The formation of a core-shell composite material was achieved through continuous synthesis; however, the final product was not entirely ZnO@Mg2Al-CO3. The product contained a mixture of ZnO, Mg2Al-CO3, Zn2Al-CO3, and the composite material. Whilst further optimisation is required in order to remove other crystalline impurities from the synthesis, this research acts as a stepping stone towards the formation of composite materials via a one-step continuous synthesis.

14.
iScience ; 23(6): 101218, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32559729

RESUMO

The chemical industry must decarbonize to align with UN Sustainable Development Goals. A shift toward circular economies makes CO2 an attractive feedstock for producing chemicals, provided renewable H2 is available through technologies such as supercritical water (scH2O) gasification. Furthermore, high carbon and energy efficiency is paramount to favorable techno-economics, which poses a challenge to chemo-catalysis. This study demonstrates continuous gas fermentation of CO2 and H2 by the cell factory, Cupriavidus necator, to (R,R)-2,3-butanediol and isopropanol as case studies. Although a high carbon efficiency of 0.75 [(C-mol product)/(C-mol CO2)] is exemplified, the poor energy efficiency of biological CO2 fixation requires ∼8 [(mol H2)/(mol CO2)], which is techno-economically infeasible for producing commodity chemicals. Heat integration between exothermic gas fermentation and endothermic scH2O gasification overcomes this energy inefficiency. This study unlocks the promise of sustainable manufacturing using renewable feedstocks by combining the carbon efficiency of bio-catalysis with energy efficiency enforced through process engineering.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32235575

RESUMO

The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS) (35%), SARS-CoV-2 is highly contagious and transmissible from human to human with an incubation period of up to 24 days. Some statistical studies have shown that, on average, one infected patient may lead to a subsequent 5.7 confirmed cases. Since the first reported case of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 on December 1, 2019, in Wuhan, China, there has been a total of 60,412 confirmed cases with 1370 fatalities reported in 25 different countries as of February 13, 2020. The outbreak has led to severe impacts on social health and the economy at various levels. This paper is a review of the significant, continuous global effort that was made to respond to the outbreak in the first 75 days. Although no vaccines have been discovered yet, a series of containment measures have been implemented by various governments, especially in China, in the effort to prevent further outbreak, whilst various medical treatment approaches have been used to successfully treat infected patients. On the basis of current studies, it would appear that the combined antiviral treatment has shown the highest success rate. This review aims to critically summarize the most recent advances in understanding the coronavirus, as well as the strategies in prevention and treatment.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Coronavirus , Surtos de Doenças/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Betacoronavirus , COVID-19 , China/epidemiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Controle de Infecções/métodos , Mortalidade , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , Fatores de Tempo , Tratamento Farmacológico da COVID-19
16.
Data Brief ; 29: 105358, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32258261

RESUMO

Morphological characterization of chars from coal and bagasse plays an important role in both the burning efficiency and intrinsic reactivity of chars, during a combustion process [1], [2]. In this work, abundant data on the morphology of chars produced from coal and bagasse blends are presented. Char synthesis was performed varying the temperature (900, 1000 and 1100 °C) and bagasse proportion feeding (0, 25, 50, 75 and 100% w/w) in the pyrolysis reaction. Proximate, ultimate, petrographic and vitrinite reflectance of raw coal and bagasse are presented. Char morphology is classified into three groups -- thin walls, thick walls, and solid particles--, and results are exhibited. The data set is a comprehensive source for advancing in a further understanding of char's morphology from coal-bagasse blends.

17.
Front Chem ; 8: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039161

RESUMO

This study focuses on the use of a microwave reactor that combines biomass pyrolysis, at mild temperature, with catalytic reforming of the pyrolytic gas, using activated carbon, for generating hydrogen-rich synthesis gas. The traditional pyrolysis of biomass coupled with the reforming of its pyrolytic yields were also conducted using an electrically heated reactor. The bio-oil attained from conventional pyrolysis was higher in comparison to the yield from microwave pyrolysis. The reforming of the pyrolytic gas fraction led to reductions in bio-oil yield to <3.0 wt%, with a simultaneous increase in gaseous yields. An increase in the syngas and H2 selectivity was discovered with the reforming process such that the use of microwave pyrolysis with activated carbon reforming produced 85 vol% synthesis gas fraction containing 55 vol% H2 in comparison to the 74 vol% syngas fraction with 30 vol% H2 obtained without the reforming. Cracking reactions were improved with microwave heating, while deoxidation and dehydrogenation reactions were enhanced by activated carbon, which creates a reduction environment. Consequently, these reactions generated H2-rich syngas formation. The approach implemented in this study revealed higher H2, syngas yield and that the overall LHV of products has huge potential in the transformation of biomass into high-value synthesis gas.

18.
Sci Total Environ ; 655: 1139-1149, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577107

RESUMO

Copper and zinc are routinely used in livestock antimicrobial footbaths in commercial farming. The footbath mix is a cost to farmers, and the disposal of spent footbath into slurry tanks leads to soil contamination, as well as the potential for antimicrobial metal resistance and co-selection. This study assesses the potential to mitigate a source of antimicrobial metal resistance in slurry tanks while recovering copper and zinc from spent cattle footbaths. This is the first study in literature to investigate the potential of recovering copper from cattle footbath solutions via any method. The sorbent, Ca2Al-EDTA Layered Double Hydroxides (LDH), were used to remove Cu2+ from a Cu2SO4·5H20 solution at different temperatures. The maximum Cu2+ uptake from the Cu2SO4·5H20 solution was 568 ±â€¯88 mg g-1. Faster and higher equilibrium uptake was achieved by increasing the temperature of the solution. The sorbent was found to be effective in removing copper and zinc from a commercially available cattle footbath solution (filtered footbath solution Cu2+ uptake 283 ±â€¯11.05 mg g-1, Zn2+ uptake 60 ±â€¯0.05 mg g-1). Thus, this study demonstrates the opportunity for a completely novel and potentially economically beneficial method of mitigating antimicrobial resistance in agriculture and the environment, while also providing a new valuable copper and zinc waste stream for secondary metal production.


Assuntos
Antibacterianos/análise , Cobre/análise , Indústria de Laticínios/métodos , Farmacorresistência Bacteriana , Hidróxidos/química , Águas Residuárias/análise , Zinco/análise , Adsorção , Animais , Bovinos
19.
Materials (Basel) ; 11(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065239

RESUMO

In this paper, the applicability of mechanical tests for biomass pellet characterisation was investigated. Pellet durability, quasi-static (low strain rate), and dynamic (high strain rate) mechanical tests were applied to mixed wood, eucalyptus, sunflower, miscanthus, and steam exploded and microwaved pellets, and compared to their Hardgrove Grindability Index (HGI), and milling energies for knife and ring-roller mills. The dynamic mechanical response of biomass pellets was obtained using a novel application of the Split Hopkinson pressure bar. Similar mechanical properties were obtained for all pellets, apart from steam-exploded pellets, which were significantly higher. The quasi-static rigidity (Young's modulus) was highest in the axial orientation and lowest in flexure. The dynamic mechanical strength and rigidity were highest in the diametral orientation. Pellet strength was found to be greater at high strain rates. The diametral Young's Modulus was virtually identical at low and high strain rates for eucalyptus, mixed wood, sunflower, and microwave pellets, while the axial Young's Modulus was lower at high strain rates. Correlations were derived between the milling energy in knife and ring roller mills for pellet durability, and quasi-static and dynamic pellet strength. Pellet durability and diametral quasi-static strain was correlated with HGI. In summary, pellet durability and mechanical tests at low and high strain rates can provide an indication of how a pellet will break down in a mill.

20.
J Colloid Interface Sci ; 504: 492-499, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28605712

RESUMO

Continuous hydrothermal synthesis (CHS) of nanoparticles is most commonly associated with the production of metal oxides and ceramics. However, recent work has demonstrated that layered double hydroxides (LDH) can also be synthesised via this method. This research investigates how altering temperature, pressure and precursor base concentration affects growth and nucleation rates which impact on LDH characteristics. Experiments examined the separate effects of increased temperature, pressure and NaOH concentration on crystal domain length (CDL) and surface area. Adjustments to temperature and pressure in the reactor system resulted in variations in CDL. High temperature (200°C) with increasing pressure resulted in an increase in CDL between 50bar and 100bar, then a decrease up to 200bar. Crystal domain length of samples synthesised at 75°C and 150°C showed increases between 50bar and 150bar but a decrease at higher pressure. Variation in CDL showed little impact on specific surface area (4-7m2g-1). Increasing NaOH decreased CDL. High precursor NaOH causes rapid nucleation to occur to the detriment of crystal growth. Samples with 1M and 0.5M NaOH exhibit Ca(OH)2 impurities as the increased NaOH causes precipitation of Ca2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...