Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Total Environ ; 914: 169296, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104811

RESUMO

Methane production by livestock is a substantial component of greenhouse gas emissions worldwide. The marine red algae, Asparagopsis taxiformis, has been identified as a possible supplement in livestock feeds due to its potent inhibition of methane production but currently is unable to be produced at scale. Finding additional taxa that inhibit methane production is therefore desirable. Here we provide foundational evidence of methanogenesis-inhibiting properties in Australian freshwater plants and algae, reviewing candidate species and testing species' chemical composition and efficacy in vitro. Candidate plant species and naturally-occurring algal mixes were collected and assessed for ability to reduce methane in batch testing and characterised for biochemical composition, lipids and fatty acids, minerals and DNA. We identified three algal mixes and one plant (Montia australasica) with potential to reduce methane yield in in vitro batch assay trials. All three algal mixes contained Spirogyra, although additional testing would be needed to confirm this alga was responsible for the observed activity. For the two samples that underwent multiple dose testing, Algal mix 1 (predominantly Spirogyra maxima) and M. australasica, there seems to be an optimum dose but sources, harvesting and storage conditions potentially determine their methanogenesis-inhibiting activity. Based on their compositions, fatty acids are likely to be acting to reduce methane in Algal mix 1 while M. australasica likely contains substantial amounts of the flavonoids apigenin and kaempferol, which are associated with methane reduction. Based on their mineral composition, the samples tested would be safe for livestock consumption at an inclusion rate of 20%. Thus, we identified multiple Australian species that have potential to be used as a feed supplement to reduce methane yield in livestock which may be suitable for individual farmers to grow and feed, reducing complexities of supply associated with marine alternatives and suggesting avenues for investigation for similar species elsewhere.


Assuntos
Gado , Metano , Rodófitas , Animais , Austrália , Ruminantes , Plantas , Poeira , Ácidos Graxos
2.
Sci Total Environ ; 897: 165342, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429474

RESUMO

Creating and managing riparian buffer zones (RBZs) is regarded as a global best-practice management strategy for maintaining and improving waterway health. Agricultural land often utilises RBZs as highly productive pasture, exposing waterways to increased inputs of nutrients, pollutants, and sediment, in addition to reducing carbon sequestration and habitat for native flora and fauna. This project developed a novel approach to the application of multisystem ecological and economic quantification models to the property-scale, at low cost and high speed. We developed a state-of-the-art dynamic geospatial interface to communicate these outputs when switching from pasture to revegetated riparian zone via planned restoration efforts. The tool was developed using the regional conditions of a south-east Australian catchment as a case study but is designed to be adaptable around globally using equivalent model inputs. Ecological and economic outcomes were determined using existing methods, including an agricultural land suitability analysis to quantify primary production, an estimation of carbon sequestration using historic vegetation datasets and GIS software analysis to determine spatial costings of revegetation and fencing. Economic outcomes are presented in raw values of pasture produced and carbon sequestered, and fencing and revegetation costs can be easily altered for enhanced usability and interoperability. This tool can provide property-specific data for almost 16,000 properties in a catchment area of over 130,000 km2 and 19,600 km of river length. Our results indicated that current financial incentives for revegetation rarely cover the cost of giving up pasture, but these costs may be compensated by social and ecological outcomes achieved over time. This method provides a novel way of informing alternative management approaches, such as incremental revegetation plans and the selective harvesting of timber from RBZ. The model provides an innovative framework for improved RBZ management and can be used to inform property-specific responses and guide discussion among stakeholders.


Assuntos
Agricultura , Ecossistema , Austrália , Agricultura/métodos , Rios
3.
Environ Toxicol Chem ; 40(10): 2899-2911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34236106

RESUMO

Deriving water quality criteria (WQC) for aquatic risk assessment requires sufficient toxicity data, which can determine the accuracy of WQC. Given that toxicity data vary between test species and endpoints, there is a great need to compare such data to generate the most suitable data set for WQC derivation. In the present study, a series of 11 ammonia exposure bioassays were conducted on Chironomidae species in either China or Australia, with test species and test endpoints varied (2 Chironomus sp., enzymatic up to lethal endpoints, and no-observed-effect concentration up to median lethal concentration [LC50] as endpoint metrics). There were no statistically significant differences between toxicity results generated from China compared to Australia using Chironomus sp., indicating that published data on native species generated in different countries could be appropriate for inclusion in the development of local Chinese WQC. In addition, the Chironomidae larvae laboratory-based toxicity value (LC50 = 384.6 mg/L) was lower than that of the in situ field-based toxicity value (LC50 ≥ 451.2 mg/L) where sensitive life stages are used, and, specifically for C. riparius, endpoints linked to biochemical and gene expression effects could be as sensitive as or more sensitive than chronic endpoints, both of which were more sensitive than acute endpoints. These findings help in the development of WQC by demonstrating the suitability of inclusion of toxicity data from a range of sources, as well as adding to the overall pool of knowledge regarding sensitivity to ammonia which can be used in aquatic risk assessment. Environ Toxicol Chem  2021;40:2899-2911. © 2021 SETAC.


Assuntos
Chironomidae , Poluentes Químicos da Água , Amônia/análise , Amônia/toxicidade , Animais , Água Doce , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Environ Manage ; 67(2): 277-290, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33399938

RESUMO

Globally, many river systems are under stress due to overconsumption of water. Governments have responded with programmes to deliver environmental water to improve environmental outcomes. Although such programmes are essential, they may not be sufficient to achieve all desired environmental outcomes. The benefits of environmental water allocation may be improved using 'complementary measures', which are non-flow-based actions, such as infrastructure works, vegetation management and pest control. The value of complementary measures is recognised globally, but their ecological benefits are rarely well understood, either because there is limited experience with their application, or the importance of context- and location-specific factors make it difficult to generalise benefits. In this study, we developed an approach to evaluate complementary measures at different levels of detail as a mechanism to aid decision-making. For systems that require a rapid, high-level evaluation, we propose a score-based multi-criteria benefit assessment module. If more ecological detail is necessary, we outline a method based on conceptual models, expert elicitation and probability assessment. These results are used to populate a cumulative benefit assessment tool. The tool evaluates the benefits of proposed measures in the wider context by including variables such as flow, dependence on ongoing maintenance and additional ecological values. We illustrate our approach through application to the Murray-Darling Basin, Australia. As many water recovery programmes mature into their evaluation phases, there is an increasing need to evaluate the ecological benefits of including complementary measures in the toolkit available to policy makers.


Assuntos
Conservação dos Recursos Naturais , Rios , Austrália , Modelos Teóricos
5.
Oecologia ; 192(2): 375-389, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31938883

RESUMO

Amongst oviparous animals, the spatial distribution of individuals is often set initially by where females lay eggs, with potential implications for populations and species coexistence. Do the spatial arrangements of oviposition sites or female behaviours determine spatial patterns of eggs? The consequences of spatial patterns may be context independent if strong behaviours drive patterns; context dependent if the local environment dominates. We tested these ideas using a guild of stream-dwelling caddisflies that oviposit on emergent rocks, focussing on genera with contrasting behaviours. In naturally occurring oviposition landscapes (riffles with emergent rocks), we surveyed the spatial arrangement and environmental characteristics of all emergent rocks, identified and enumerated egg masses on each. Multiple riffles were surveyed to test for spatially invariant patterns and behaviours. In landscapes, we tested for spatial clumping of oviposition sites exploited by each species and for segregation of congeneric species. At oviposition sites, we characterised the frequency distributions of egg masses and tested for species associations. Genus-specific behaviours produced different spatial patterns of egg masses in the same landscapes. Congregative behaviour of Ulmerochorema spp. at landscape scales and an aggregative response at preferred oviposition sites led to clumped patterns, local aggregation and species overlap. In contrast, avoidance behaviours by congeners of Apsilochorema resulted in no or weak clumping, and species segregation in some landscapes. Spatial patterns were consistent across riffles that varied in area and oviposition site density. These results suggest that quite different oviposition behaviours may be context independent, and the consequences of spatial patterns may be spatially invariant also.


Assuntos
Insetos , Oviposição , Animais , Ovos , Feminino , Rios
6.
Ecotoxicol Environ Saf ; 171: 665-676, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658302

RESUMO

A key question to be asked when developing regional water quality criteria with scarce toxicity data is whether such data need to be locally derived. To address this, ammonia toxicity data from local aquatic species in the Liao River were compared against data from species native and non-native to China, based on comparisons of the overall trends of species sensitivity distributions and derived water quality criteria. Liao River data were acquired by acute and chronic tests using five local freshwater invertebrate species, and then compiled alongside published data from Chinese national guidelines and international literature. Models of best fit using three species sensitivity distribution approaches (log-logistic, log-normal, and Burr III) did not vary markedly (r2 >0.9), and no specific model provided a best fit across all data sets. The comparisons of the overall trend of species sensitivity distribution curves showed no significant differences at either a national (Chinese native taxa tested in China versus non-native taxa) or regional level (Liao River taxa versus non-Liao River taxa). The comparisons also revealed that the inclusion or exclusions of different ecological groups had little influence on the overall trends of species sensitivity distributions. These findings suggested data on non-local and non-native species, and data from local species tested elsewhere, could be appropriate for guiding the derivation of ammonia water quality criteria for regions such as Liao River. However, caution is needed when using hazardous concentration 5% values in the development of site-specific water quality criteria for a river basin due to the considerable variation observed for ammonia (16.8-56.6 mg/L), although these differences were not statistically significant. Based on the toxicity test evaluation, a preliminary acute value of 10.0 mg/L and chronic value of 1.7 mg/L (at pH of 7.0 and 20 °C) are proposed as site-specific ammonia water quality criteria for the Liao River, China.


Assuntos
Amônia/toxicidade , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Animais , China , Chironomidae/efeitos dos fármacos , Copépodes/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Bases de Dados Factuais , Determinação de Ponto Final , Peixes , Água Doce/química , Sedimentos Geológicos/química , Modelos Teóricos , Palaemonidae/efeitos dos fármacos , Rios/química , Testes de Toxicidade
7.
Conserv Biol ; 32(6): 1233-1245, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528525

RESUMO

Ongoing ecosystem degradation and transformation are major threats to biodiversity. Measuring ecosystem change toward collapse relies on monitoring indicators that quantify key ecological processes. Yet little guidance is available on selection and use of indicators for ecosystem risk assessment. We reviewed indicator use in ecological studies of ecosystem collapse in marine pelagic and temperate forest ecosystems. We examined indicator-selection methods, indicator types (geographic distribution, abiotic, biotic), methods of assessing multiple indicators, and temporal quality of time series. We compared how these factors were applied in the ecological studies with how they were applied in risk assessments by using the International Union for Conservation of Nature's Red List of Ecosystems (RLE), for which indicators are used to estimate risk of ecosystem collapse. Ecological studies and RLE assessments rarely reported how indicators were selected, particularly in terrestrial ecosystems. Few ecological studies and RLE assessments quantified ecosystem change based on all 3 indicator types, and indicators types used differed between marine and terrestrial ecosystems. Several studies used indices or multivariate analyses to assess multiple indicators simultaneously, but RLE assessments did not because as RLE guidelines advise against them. Most studies and RLE assessments used time-series data that spanned at least 30 years, which increases the probability of reliably detecting change. Limited use of indicator-selection protocols and infrequent use of all 3 indicator types may hamper accurate detection of change. To improve the value of risk assessments for informing policy and management, we recommend using explicit protocols, including conceptual models, to identify and select indicators; a range of indicators spanning distributional, abiotic, and biotic features; indices and multivariate analyses with extreme care until guidelines are developed; time series with sufficient data to increase ability to accurately diagnose directional change; data from multiple sources to support assessments; and explicitly reporting steps in the assessment process.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Ecologia , Medição de Risco
8.
Sci Total Environ ; 616-617: 543-553, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29128841

RESUMO

Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow.


Assuntos
Secas , Ecossistema , Invertebrados , Plantas , Águas Residuárias , Animais , Mudança Climática , Purificação da Água
9.
J Environ Manage ; 203(Pt 1): 136-150, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783010

RESUMO

Environmental flows are used to restore elements of the hydrological regime altered by human use of water. One of the primary justifications and purposes for environmental flows is the maintenance of target species populations but, paradoxically, there has been little emphasis on incorporating the food-web and trophic dynamics that determine population-level responses into the monitoring and evaluation of environmental flow programs. We develop a generic framework for incorporating trophic dynamics into monitoring programs to identify the food-web linkages between hydrological regimes and population-level objectives of environmental flows. These linkages form the basis for objective setting, ecological targets and indicator selection that are necessary for planning monitoring programs with a rigorous scientific basis. Because there are multiple facets of trophic dynamics that influence energy production and transfer through food webs, the specific objectives of environmental flows need to be defined during the development of monitoring programs. A multitude of analytical methods exist that each quantify distinct aspects of food webs (e.g. energy production, prey selection, energy assimilation), but no single method can provide a basis for holistic understanding of food webs. Our paper critiques a range of analytical methods for quantifying attributes of food webs to inform the setting, monitoring and evaluation of trophic outcomes of environmental flows and advance the conceptual understanding of trophic dynamics in river-floodplain systems.


Assuntos
Cadeia Alimentar , Rios , Animais , Ecologia , Hidrologia
10.
Water Res ; 124: 108-128, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750285

RESUMO

Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Humanos , Hidrologia , Rios
11.
Mar Environ Res ; 120: 68-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27442809

RESUMO

Exploratory investigations of optimal sampling designs are a critical component of the decision-making process in ecology where inherent natural variation can lead to erroneous conclusions if left unexamined. Pilot studies and exploratory analyses that investigate the precision of sampling regimes may reduce the chances of erroneous results and can be used to optimise processing time in larger ecological research programs. In our study, we calculated optimal precision estimates for sampling macroinvertebrates and ichthyofauna in surf-zone wrack accumulations by investigating the precision of the mean for sub-samples of seine nets and also for the number of replicate seine nets to guide future sampling regimes. We discovered that the processing time for individual seine net samples could be reduced by 50% using sub-sampling and that time to process replicate seine net samples could be reduced by 25% while maintaining acceptable precision. In future, we suggest that the use of pilot studies with similar exploratory approaches should be less of an exception and more a critical component of ecological investigations, particularly in under-studied or newly-developing areas of research. Further, these types of exploratory approaches are crucially important in a variety of extremely patchy environments where variability is likely to be high.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Praias/estatística & dados numéricos , Ecologia , Monitoramento Ambiental/normas , Água do Mar
12.
PLoS One ; 9(11): e112856, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25396410

RESUMO

Landscape classification and hydrological regionalisation studies are being increasingly used in ecohydrology to aid in the management and research of aquatic resources. We present a methodology for classifying hydrologic landscapes based on spatial environmental variables by employing non-parametric statistics and hybrid image classification. Our approach differed from previous classifications which have required the use of an a priori spatial unit (e.g. a catchment) which necessarily results in the loss of variability that is known to exist within those units. The use of a simple statistical approach to identify an appropriate number of classes eliminated the need for large amounts of post-hoc testing with different number of groups, or the selection and justification of an arbitrary number. Using statistical clustering, we identified 23 distinct groups within our training dataset. The use of a hybrid classification employing random forests extended this statistical clustering to an area of approximately 228,000 km2 of south-eastern Australia without the need to rely on catchments, landscape units or stream sections. This extension resulted in a highly accurate regionalisation at both 30-m and 2.5-km resolution, and a less-accurate 10-km classification that would be more appropriate for use at a continental scale. A smaller case study, of an area covering 27,000 km2, demonstrated that the method preserved the intra- and inter-catchment variability that is known to exist in local hydrology, based on previous research. Preliminary analysis linking the regionalisation to streamflow indices is promising suggesting that the method could be used to predict streamflow behaviour in ungauged catchments. Our work therefore simplifies current classification frameworks that are becoming more popular in ecohydrology, while better retaining small-scale variability in hydrology, thus enabling future attempts to explain and visualise broad-scale hydrologic trends at the scale of catchments and continents.


Assuntos
Classificação/métodos , Conservação dos Recursos Naturais/métodos , Florestas , Geografia , Recursos Hídricos/provisão & distribuição , Análise por Conglomerados , Vitória
13.
Glob Chang Biol ; 20(11): 3471-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24832685

RESUMO

Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a robust scientific basis for estimating likely impacts of future climate change in ecosystems where no such method currently exists.


Assuntos
Mudança Climática , Ecossistema , Estuários , Chuva , Modelos Teóricos , Análise Espacial , Fatores de Tempo , Vitória , Austrália Ocidental
14.
Ecol Appl ; 23(5): 984-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23967570

RESUMO

Management of natural resources, particularly water, increasingly requires that likely benefits of particular actions (e.g., allocating an environmental flow) are quantified in advance. Therefore, new techniques are required that enable those potential benefits to be objectively compared among competing options for management (e.g., compared to a "do nothing" scenario). Scenario modeling is one method for developing such an objective comparison. We used existing hydrologic, hydrodynamic, and ecosystem response models for a case study location, the Coorong, an inverse estuary in South Australia, to illustrate the potential for such scenario modeling to inform natural resource management. We modeled a set of 12 scenarios that included different levels of water extraction, potential future climate change, and sea-level change, thereby enabling a comparison of the different drivers of possible future reductions in water availability in the Coorong. We discovered that potential future climate change combined with current extraction levels has the capacity to devastate the ecology of the Coorong, but also that much of the degradation could be averted by reducing upstream extractions of water. The inclusion of possible sea-level change had a surprising effect, whereby higher sea levels increased hydrodynamic connectivity between the Coorong's two lagoons. Increased hydrodynamic connectivity limited the occurrence of extremely low water levels and high salinities due to evapoconcentration that were simulated for dry future climates in the absence of sea-level rise. These findings strongly suggest that future ecological degradation in the Coorong is not a foregone conclusion, and that management decisions regarding water allocations upstream will determine the ecological future of this coastal lagoon.


Assuntos
Ecossistema , Monitoramento Ambiental , Estuários , Rios , Animais , Austrália , Mudança Climática , Conservação dos Recursos Naturais , Modelos Teóricos , Abastecimento de Água
15.
PLoS One ; 8(5): e62111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667454

RESUMO

An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Espécies em Perigo de Extinção , Modelos Teóricos , Medição de Risco/métodos
16.
Environ Manage ; 42(2): 310-26, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18560930

RESUMO

Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Rios , Madeira , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...