Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474803

RESUMO

Bispecific antibodies have emerged as a promising strategy for curtailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape. This brief report highlights RBT-0813 (also known as TB493-04), a synthetic, humanized, receptor-binding domain (RBD)-targeted bispecific antibody that retains picomolar affinity to the Spike (S) trimers of all major variants of concern and neutralizes both SARS-CoV-2 Delta and Omicron in vitro.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471580

RESUMO

The continual evolution of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the emergence of variants that show resistance to vaccines and neutralizing antibodies (1-4) threaten to prolong the coronavirus disease 2019 (COVID-19) pandemic (5). Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine learning-guided protein engineering technology, which is used to interrogate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as omicron (B.1.1.529), thus supporting decision making for public heath as well as guiding the development of therapeutic antibody treatments and vaccines for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...