Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17178, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821572

RESUMO

Magnetic materials in the form of magnetic rings are widely used in power engineering products. In many cases, they operate in high frequency and in nonlinear conditions, e.g., as damping elements in electrical power substations equipped with Gas-Insulated Switchgear (GIS) where they provide suppression of Very Fast Transient Overvoltages (VFTOs). To model phenomena in GIS with magnetic rings it is required to have realistic time-dependent models of magnetic materials operating in a wide frequency range and nonlinear conditions. Nowadays, this has become even more relevant due to the actual trend in the industry to create digital twins of physical devices. Models composed of high-precise discrete lumped nonlinear elements are in demand in circuit simulators like SPICE. This work introduces a method based on classical algorithms that find equivalent lumped models of magnetic cores based on frequency-dependent measurements of impedance under DC-bias current. The model is specifically designed to have smooth behavior in the current domain and thanks to that to improve numerical stability in the time domain simulations.

2.
Cells ; 12(2)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672274

RESUMO

Dravet syndrome (DRVT) is a rare form of neurodevelopmental disorder with a high risk of sudden unexpected death in epilepsy (SUDEP), caused mainly (>80% cases) by mutations in the SCN1A gene, coding the Nav1.1 protein (alfa-subunit of voltage-sensitive sodium channel). Mutations in SCN1A are linked to heterogenous epileptic phenotypes of various types, severity, and patient prognosis. Here we generated iPSC lines from fibroblasts obtained from three individuals affected with DRVT carrying distinct mutations in the SCN1A gene (nonsense mutation p.Ser1516*, missense mutation p.Arg1596His, and splicing mutation c.2589+2dupT). The iPSC lines, generated with the non-integrative approach, retained the distinct SCN1A gene mutation of the donor fibroblasts and were characterized by confirming the expression of the pluripotency markers, the three-germ layer differentiation potential, the absence of exogenous vector expression, and a normal karyotype. The generated iPSC lines were used to establish ventral forebrain organoids, the most affected type of neurons in the pathology of DRVT. The DRVT organoid model will provide an additional resource for deciphering the pathology behind Nav1.1 haploinsufficiency and drug screening to remediate the functional deficits associated with the disease.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epilepsias Mioclônicas/genética , Neurônios/metabolismo , Prosencéfalo/metabolismo
3.
PLoS One ; 17(7): e0271539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867729

RESUMO

Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Antígeno AC133 , Biomarcadores , Subunidade alfa 2 de Fator de Ligação ao Core , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Prognóstico
4.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327967

RESUMO

Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein-protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A-HNF1A transcriptional networks.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Regulação para Baixo , Redes Reguladoras de Genes , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Humanos , Japão , Lipídeos , Neoplasias Hepáticas/genética , Mutação
5.
Artigo em Inglês | MEDLINE | ID: mdl-35165063

RESUMO

OBJECTIVES: This study aimed to determine human papillomavirus (HPV) status and genotypes, the HPV status-dependent survival, and the applicability of the eighth TNM classification in Polish patients diagnosed with oropharyngeal squamous cell carcinoma (OPSCC). STUDY DESIGN: All patients with primary OPSCC, diagnosed and treated from 2007 to 2017 at the National Research Institute of Oncology, Warsaw, Poland, who underwent radical radiotherapy were included. The Kaplan-Meier method was deployed to produce 3- and 5-year observed survival (OS) estimates. RESULTS: A total of 110 OPSCC cases were identified. Double positivity for HPV (IHC p16INK4a and HPV-DNA) was recorded in 70.9% of cases, with HPV16 being the most prevalent genotype (96.2%). The disease stage was significantly less advanced in the HPV-related group than in the HPV-negative group (P < .001). Three- and 5-year OS in HPV-related carcinoma was 80.7% and 74.0%, respectively; in the HPV-negative group, OS was 52.9% and 48.5%. OS rates were associated with HPV status, tumor stage, and disease stage according to the eighth edition TNM classification. CONCLUSIONS: The majority of Polish patients with OPSCC are HPV16-positive. In HPV-related OPSCC, survival rates are significantly higher than in HPV-negative OPSCC. The findings support the requirement of HPV testing in Polish patients with OPSCC because HPV-positive status influences tumor prognosis.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estadiamento de Neoplasias , Neoplasias Orofaríngeas/patologia , Papillomaviridae , Polônia , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163468

RESUMO

The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/química , Fenótipo , RNA-Seq , Transdução de Sinais
7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201586

RESUMO

The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study's objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/metabolismo , Prenhez/metabolismo , Proteínas/metabolismo , Animais , Feminino , Gravidez , Proteínas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Suínos
8.
Cells ; 9(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291744

RESUMO

PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.


Assuntos
Regulação da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Mutação , Neurociências , Domínios Proteicos , Risco , Células-Tronco/citologia
9.
Genes (Basel) ; 11(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198372

RESUMO

Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway, transmitting information from the outside to the cell nucleus. The main function of the MAPK/ERK pathway is to regulate cell growth, migration, and proliferation. The most common mutations in the BRAF gene encode the V600E mutant (class I), which causes continuous activation and signal transduction, regardless of external stimulus. Consequently, cell proliferation and invasion are enhanced in cancer patients with such mutations. The V600E mutation has been linked to melanoma, colorectal cancer, multiple myeloma, and other types of cancers. Importantly, emerging evidence has recently indicated that new types of mutations (classes II and III) also play a paramount role in the development of cancer. In this minireview, we discuss the influence of various BRAF mutations in cancer, including aberrant transcriptional gene regulation in the affected tissues.


Assuntos
Mutação , Neoplasias/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas B-raf/metabolismo
10.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003409

RESUMO

PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and ß, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.


Assuntos
Diferenciação Celular/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética , Neurogênese/genética , Neurônios/metabolismo , Animais , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transdução de Sinais , Fatores de Transcrição/genética , Tretinoína/metabolismo
11.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751080

RESUMO

NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Hepáticas/genética , Fator 2 Relacionado a NF-E2/genética , Ativação Transcricional , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo , Prognóstico , Transdução de Sinais , Análise de Sobrevida
12.
Artigo em Inglês | MEDLINE | ID: mdl-31803139

RESUMO

The corpus luteum (CL) is an important tissue of the female reproductive process which is established through ovulation of the mature follicle. Pulsatile release of prostaglandin F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle in most non-primate species. The rapid functional regression of the CL, which coincides with decrease of progesterone production, is followed by its structural regression. Although we now have a better understanding of how the CL is triggered to undergo programmed cell death, the precise mechanisms governing CL protein degradation in a very short period of luteolysis remains unknown. In this context, activation of ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP) maintains tissue homeostasis in the face of both internal and external stressors. The UPP also controls physiological processes in many gonadal cells. Emerging evidence suggests that UPP dysfunction is involved in male and female reproductive tract dysfunction. Autophagy is activated when cells are exposed to different types of stressors such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an important role for the UPP and autophagy in the CL, the key underlying transcriptional mechanisms have not been well-documented. In this review, we propose how CL regression may be governed by the ubiquitin-proteasome and autophagy pathways. We will further consider potential transcription factors which may regulate these events in the CL.

13.
Materials (Basel) ; 12(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151204

RESUMO

To better understand the regulation and function of cellular interactions, three-dimensional (3D) assemblies of single cells and subsequent functional analysis are gaining popularity in many research fields. While we have developed strategies to build stable cellular structures using optical tweezers in a minimally invasive state, methods for manipulating a wide range of cell types have yet to be established. To mimic organ-like structures, the construction of 3D cellular assemblies with variety of cell types is essential. Our recent studies have shown that the presence of nonspecific soluble polymers in aqueous solution is the key to creating stable 3D cellular assemblies efficiently. The present study further expands on the construction of 3D single cell assemblies using two different cell types. We have successfully generated 3D cellular assemblies, using GFP-labeled adipose tissue-derived stem cells and endothelial cells by using optical tweezers. Our findings will support the development of future applications to further characterize cellular interactions in tissue regeneration.

14.
J Vis Exp ; (146)2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31081818

RESUMO

The P19 cell line derived from a mouse embryo-derived teratocarcinoma has the ability to differentiate into the three germ layers. In the presence of retinoic acid (RA), the suspension cultured P19 cell line is induced to differentiate into neurons. This phenomenon is extensively investigated as a neurogenesis model in vitro. Therefore, the P19 cell line is very useful for molecular and cellular studies associated with neurogenesis. However, protocols for neuronal differentiation of P19 cell line described in the literature are very complex. The method developed in this study are simple and will play a part in elucidating the molecular mechanisms in neurodevelopmental abnormalities and neurodegenerative diseases.


Assuntos
Células-Tronco de Carcinoma Embrionário/patologia , Neurogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Neurogênese/efeitos dos fármacos , Tretinoína/farmacologia
15.
Behav Brain Res ; 326: 209-216, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28284950

RESUMO

The neuroprotective role of the endogenous opioid system in the pathophysiological sequelae of brain injury remains largely ambiguous. Noteworthy, almost no data is available on how its genetically determined activity influences the outcome of mild traumatic brain injury. Thus, the aim of our study was to examine the effect of opioid receptor blockage on cognitive impairments produced by mild traumatic brain injury in mice selectively bred for high (HA) and low (LA) swim-stress induced analgesia that show innate divergence in opioid system activity. Mild traumatic brain injury was induced with a weight-drop device on anaesthetized mice. Naloxone (5mg/kg) was intraperitoneally delivered twice a day for 7days to non-selectively block opioid receptors. Spatial memory performance and manifestations of depressive-like behavior were assessed using the Morris Water Maze and tail suspension tests, respectively. Mild traumatic brain injury resulted in a significant deterioration of spatial memory performance and severity of depressive-like behavior in the LA mouse line as opposed to HA mice. Opioid receptor blockage with naloxone unmasked cognitive deficits in HA mice but was without effect in the LA line. The results suggest a protective role of genetically predetermined enhanced opioid system activity in suppression of mild brain trauma-induced cognitive impairments. Mice selected for high and low swim stress-induced analgesia might therefore be a useful model to study the involvement of the opioid system in the pathophysiology and neurological outcome of traumatic brain injury.


Assuntos
Comportamento Animal/fisiologia , Concussão Encefálica/fisiopatologia , Depressão/fisiopatologia , Transtornos da Memória/fisiopatologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neuroproteção/fisiologia , Receptores Opioides/efeitos dos fármacos , Memória Espacial/fisiologia , Analgesia , Animais , Depressão/induzido quimicamente , Modelos Animais de Doenças , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/administração & dosagem , Regulação para Cima
16.
Cent Eur J Immunol ; 41(1): 71-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27095925

RESUMO

The aim of the present study was the assessment of the putative influence of yeast and filamentous fungi in healthcare and control (office) workplaces (10 of each kind) on immune system competence measured by NK (natural killer), CD4(+), and NKT (natural killer T lymphocyte) cell levels in the blood of the personnel employed at these workplaces. Imprints from floors and walls were collected in winter. The blood was taken in spring the following year, from 40 men, 26 to 53 years old, healthcare workers of hospital emergency departments (HED), who had been working for at least five years in their current positions, and from 36 corresponding controls, working in control offices. Evaluation of blood leukocyte subpopulations was done by flow cytometry. The qualitative analysis of the surface samples revealed a prevalence of strains belonging to Aspergillus spp. and Penicillium spp. genus. There was no statistically significant difference between the level of NKT; however, the percentage of NK cells was lower in the blood of HED workers than in the blood of offices personnel. Spearman analysis revealed the existence of positive correlation (r = 0.4677, p = 0.002) between the total CFU/25 cm(2) obtained by imprinting method from walls and floors of HED and the percentage of NKT (CD3(+)16(+)56(+)) lymphocytes collected from the blood of their personnel, and negative correlation (r = -0. 3688, p = 0.019) between this parameter of fungal pollution and the percentage of CD4(+) lymphocytes in the blood of HED staff. No other correlations were found.

17.
Cent Eur J Immunol ; 40(3): 360-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648782

RESUMO

The aim of the present study was to find a possible relationship between the presence of yeast and filamentous fungi in hospital emergency departments and the activity levels of blood granulocytes and monocytes in emergency personnel. The study of mycological pollution was conducted in winter; the samples were collected from 10 Warsaw hospitals emergency departments (HE D) and in 10 control locations (office spaces) and included air samples and swabbing of floor and walls. The blood for immunological investigation was taken in spring, from 40 men, 26 to 53 years old, healthcare workers of these departments, who have been working for at least 5 years in their current positions, and from 36 corresponding controls, working in control offices. Evaluation of blood leukocyte subpopulations was done by hematological analyzer and cytometry analysis and monocyte and granulocyte phagocytosis by Phagotest. There were no significant differences in the level of mycological contamination between the test and control places. The qualitative analysis of the surfaces and air samples revealed a prevalence of strains belonging to Aspergillus spp. and Penicillium spp. genus. Statistical analysis revealed the existence of negative correlation between the number of phagocytizing blood monocytes and fungi spores content on floor and wall surfaces in hospital emergency departments (r = -0.3282, p < 0.05 and positive correlation between the number of phagocytizing monocytes in the blood of office workers and fungi pollution of control offices (r = 0.4421, p < 0.01).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...