Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 38(10): 1359-1367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908131

RESUMO

A microfluidic paper-based analytical device (µ-PAD) is a promising new technology platform for the development of extremely low-cost sensing devices. However, it has low sensitivity that might not enable to measure maximum allowable concentration of various pollutants in the environment. In this study, a dispersive liquid-liquid microextraction (DLLME) was developed as a preconcentration method to enhance the sensitivity of the µ-PAD for trace analysis of selected pesticides. Four critical parameters (volume of n-hexane and acetone, extraction time, NaCl amount) that affect the efficiency of DLLME have been optimized using response surface methodology. An acceptable mean recovery of 79-97% and 83-93% was observed at 1 µg L-1 and 5 µg L-1 fortification level, respectively, with very good repeatability (2.2-6.01% RSD) and reproducibility (5.60-10.41% RSD). Very high enrichment factors ranging from 317 to 1471 were obtained. The limits of detection for the studied analytes were in the range of 0.18-0.41 µg L-1 which is much lower than the WHO limits of 5-50 µg L-1 for similar category of analytes. Therefore, by coupling DLLME with µ-PAD, a sensitivity that allows to detect environmental threat and also that surpassed most of the previous reports have been achieved in this study. This implies that the preconcentration step has a paramount contribution to address the sensitivity problem associated with µ-PAD.


Assuntos
Microextração em Fase Líquida , Praguicidas , Poluentes Químicos da Água , Acetona/análise , Carbamatos/análise , Microextração em Fase Líquida/métodos , Microfluídica , Organofosfatos/análise , Praguicidas/análise , Reprodutibilidade dos Testes , Cloreto de Sódio , Água , Poluentes Químicos da Água/análise
2.
Bull Environ Contam Toxicol ; 109(2): 344-351, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689692

RESUMO

Microfluidic paper-based analytical devices (µ-PADs) are a new technology platform for the development of extremely low-cost sensing applications. In this study, µ-PADs has been developed for quantitative determination of carbamate pesticides. Key experimental parameters including concentration and volume of acetylcholinesterase, acetylthiocholine iodide and 5,5'-dithiobis-(2-nitrobenzoic acid), incubation time and image capturing time were systematically optimized. Under optimal conditions, the method showed wide range of linearity (0.25-16 mg/L), repeatability (4%-5% RSD) and intermediate precision (7%-10% RSD). Limit of detection was observed to be 0.4, 0.24 and 0.46 mg/L for carbaryl, carbosulfan and furathiocarb, respectively. An acceptable mean recovery (87% to 94%) was observed for the three pesticides at 1 mg/L fortification level. The results reveal that the developed method requires minimal reagents, simple and is easy to handle. It can be used for the quantification of carbamate pesticides in resource limited laboratories without the need for the conventional analytical instruments.


Assuntos
Acetilcolinesterase , Praguicidas , Carbamatos , Carbaril , Microfluídica
3.
Bioresour Bioprocess ; 9(1): 125, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647903

RESUMO

The objective of the present study was an optimization of operating parameters and the performance of the methanogenesis reactor in phased anaerobic digestion (AD) of slaughterhouse wastewater at 37.5°C. Accordingly, the feedstock of the methanogenic reactor was effluent from the hydrolytic-acidogenic reactor operating at HRT of 3-days and OLR of 1789 mg/L. The methanogenesis phase was also investigated at different hydraulic retention time (HRT) values ranging from 12 to 3 days at 3-day intervals, and organic loading rates (OLR) of 149, 199, 298, and 596 mg of COD/L. The methanogenesis reactor effluent concentrations of TN, TP, PO4- 3, SO4- 2, and S2- 2 were ranging between 424-464, 83-117, 63-86, 130-197, and 0.98-1.02 mg/L, respectively. The removal efficiencies of TN and TP were vary from 10-17% to 17-21%, respectively. The average biogas production was 125 ± 16, 150 ± 10, 185 ± 4, and 154 ± 17 mL at HRT of 12, 9, 6, and 3 days, respectively. Methane quality (%) and yield (mg/L of COD) were 55-67% and 0.02-0.03, respectively. Furthermore, the average stability indicator parameter values of (total volatile fatty acid (TVFA) = 520 ± 19 mg/L, total alkalinity (TotA) = 1424 ± 10 mg/L, TVFA:TotA. Ratio = 0.36, salinity = 1172 mg/L, pH = 6.92) and performance indicator parameters removal efficiency (RE) for (chemical oxygen demand (COD) = 81%, volatile solid (VS) RE = 95%, biogas production = 185 ± 4 mL, methane yield = 0.03 per mg COD consumed) were achieved at HRT of 6 days and OLR of 298 mg of COD/L. Low removal efficiencies of TP and TN at all HRT/OLR were observed for the methanogenic reactor signifying further treatment system.

4.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770886

RESUMO

Lead pollution is a severe health concern for humankind. Utilizing water contaminated with lead can cause musculoskeletal, renal, neurological, and fertility impairments. Therefore, to remove lead ions, proficient, and cost-effective methods are imperative. In this study, the Odaracha soil which is traditionally used by the local community of the Saketa District was used as a novel low-cost technology to adsorb lead ions. Odaracha adsorbent was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption process followed the batch adsorption experiment. The response surface method was implemented to derive the operating variables' binary interaction effect and optimize the process. According to the study's experimental result, at optimum experimental conditions Odaracha adsorbent removes 98.17% of lead ions. Based on the result of the central composite design model, the Pb2+ ion removal efficiency of Odaracha was 97.193%, indicating an insignificant dissimilarity of the actual and predicted results. The coefficient of determination (R2) for Pb2+ was 0.9454. According to the factors' influence indicated in the results of the central composite design model, all individual factors and the interaction effect between contact time and pH has a significant positive effect on lead adsorption. However, other interaction effects (contact time with dose and pH with dose) did not significantly influence the removal efficiency of lead ions. The adsorption kinetics were perfectly fitted with a pseudo-second-order model, and the adsorption isotherm was well fitted with the Freundlich isotherm model. In general, this study suggested that Odaracha adsorbent can be considered a potential adsorbent to remove Pb2+ ions and it is conceivable to raise its effectiveness by extracting its constituents at the industrial level.

5.
Heliyon ; 7(9): e07973, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568597

RESUMO

Plastics contribute a magnificent role to modern civilization, but the waste becomes a huge burden to ecology and remains intact for a thousand years. Hence, the recent movement is shifted to biodegradable plastic. In this study, an attempt was made to introduce an added value to the environment where the bio-plasticized materials were used for phosphate removal. A G-plasticized magnetic starch-based Fe3O4 clay polymer nanocomposite (PNC) was synthesized to remove phosphate from the aqueous solution. It was synthesized from activated carbon (AC), coated iron oxide nanoparticles (CIONP), nanoclay (NC), and glycerol (G) as a plasticizer. The synthesized adsorbents were characterized with UV-Vis, SEM, XRD, and FTIR. The PNC and constituent (CIONP) were tested for phosphate removal through batch adsorption experiments. The adsorption capacity increases with increasing the adsorbent dose and decreases with an increase in phosphate concentration. The synthesized PNC effectively raised the constituent optimum phosphate ion adsorption pH from acidic (pH = 3) to slightly acidic (pH = 6). At the optimal pH, the CIONP and PNC maximum phosphate adsorption capacity (MPAC) was 3.12 and 2.31 mg P/g, respectively. In addition, the phosphate removal efficiency of PNC (45-95% at pH 6) was comparable to CIONP (58-97% at pH 3) under an initial 2-100 mg P/L. The adsorbents adsorption kinetics and isotherm study best described by the pseudo-second-order and Freundlich model, in turn. The SEM images support the conclusion, in which the PNC shows a heterogenous porous surface. Therefore, the adsorption mechanisms were mainly described by multilayer and chemical adsorption, such as electrostatic and ion exchange. It can be concluded that there is a positive synergistic effect between the biopolymer (starch) and nanomaterials that form the PNC. This study results propose the multiple added values of modified bio-plasticized material (with adsorbent) for environmental (phosphate) remediation.

6.
Heliyon ; 7(5): e07115, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136690

RESUMO

The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1-5 N), microwave power (800-1200 W), temperature (80-180 °C) and extraction time (5-30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P < 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g-1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.

7.
Heliyon ; 7(5): e07129, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136695

RESUMO

The use of untreated or partially treated wastewater reuse for urban and peri-urban agricultural irrigation is a common practice in developing countries like Ethiopia. Such practices, however, pose significant environmental and public health risks. The objective of this study was to evaluate the irrigation suitability of anaerobic digestion brewery effluent (ADBE) and two-stage horizontal subsurface constructed wetland post-treated ADBE (CWPBE). A series of pot experiments were conducted in a plastic - greenhouse system arranged in three sets of irrigation schemes: Treatment Group1 (TG1): municipal pipe tap water (MPTW) irrigated pots; Treatment Group2 (TG2): ADBE irrigated pots, and Treatment Group3 (TG3): CWPBE irrigated pots. Pots packed with the same amount of sandy clay loam soil and local tomato seeds sown were irrigated following an updated tomato irrigation schedule derived from the FAO CROPWAT stimulation model for 120 days. The findings from key irrigation water quality parameters showed that the CWPBE achieved the prescribed irrigation water standards with values of pH (7.4 ± 0.15), electrical conductivity (1.9 ± 0.11 dS.m-1), total suspended solids (25 ± 4.17 mgL-1), chemical oxygen demand (185.1 ± 1.66 mgL-1), total nitrogen (17.4 ± 0.7 mgL-1), total phosphorous (8.8 ± 0.26 mgkg-1), calcium (10.5 ± 3.6 mgkg-1), magnesium (4.9 ± 0.98 mgkg-1), sodium (4.4 ± 1.51 mgkg-1), potassium (2.3 ± 1.15 mgkg-1), sodium adsorption ratio (1.6 ± 0.34), and total coliform (8 ± 0.16×10-5 CFU/100 mL). Moreover, tomato plants grown in TG3 attained higher growth such as number of leaves (85.6 ± 4.68), plant height (92.2 ± 1.29 cm), stem diameter (13.1 ± 2.35 cm) and leaf area (35.5 ± 1.03 cm2) as well as higher biomass (61.2 ± 1.33 kgm-2) and fruit (46.4 ± 3.51 kgm-2) yields over other treatment groups. The results revealed that irrigation waters significantly improved both growth and yield parameters of tomato plants with the ascending order of TG1 < TG2 < TG3. Moreover, CWPBE showed minima short-term residual effect on soil physicochemical properties as compared to ADBE, and thus, it has potential suitability for agricultural irrigation reuse.

8.
PLoS One ; 16(4): e0249720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33844703

RESUMO

The massive growth of potentially toxic cyanobacteria in water supply reservoirs, such as Legedadi Reservoir (Ethiopia), poses a huge burden to water purification units and represents a serious threat to public health. In this study, we evaluated the efficiency of the flocculants/coagulants chitosan, Moringa oleifera seed (MOS), and poly-aluminium chloride (PAC) in settling cyanobacterial species present in the Legedadi Reservoir. We also tested whether coagulant-treated reservoir water promotes cyanobacteria growth. Our data showed that suspended solids in the turbid reservoir acted as ballast, thereby enhancing settling and hence the removal of cyanobacterial species coagulated with chitosan, Moringa oleifera seed, or their combination. Compared to other coagulants, MOS of 30 mg/L concentration, with the removal efficiency of 93.6%, was the most effective in removing cyanobacterial species without causing cell lysis. Contrary to our expectation, PAC was the least effective coagulant. Moreover, reservoir water treated with MOS alone or MOS combined with chitosan did not support any growth of cyanobacteria during the first two weeks of the experiment. Our data indicate that the efficacy of a flocculant/coagulant in the removal of cyanobacteria is influenced by the uniqueness of individual lakes/reservoirs, implying that mitigation methods should consider the unique characteristic of the lake/reservoir.


Assuntos
Quitosana/química , Cianobactérias/isolamento & purificação , Lagos/microbiologia , Moringa oleifera/química , Purificação da Água/métodos , Abastecimento de Água/métodos , Etiópia , Floculação , Lagos/análise , Sementes
9.
Bioresour Bioprocess ; 8(1): 8, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38650181

RESUMO

The anaerobic process is considered to be a sustainable technology for the treatment of wastewaters rich in organic matter mainly due to its lower energy consumption and production of value-added products such as biogas and organic fertilizer. However, it cannot be seen as providing 'complete' environmental solution as its treated effluents would typically not meet the desired discharge limits in terms of residual carbon, nutrients and other pollutants. This has given impetus to subsequent post treatment in order to meet the environmental standards and protect the receiving water bodies and environment. The aim of this study was to evaluate the post-treatment potential of a pilot scale two-stage horizontal subsurface flow constructed wetland (HSSFCW) system planted with Cyperus alternifolius and Typha latifolia, respectively, for enhanced removal of residual carbon and nutrient from an up-flow anaerobic sludge blanket (UASB) reactor treated brewery effluent. A pilot scale two-stage HSSFCW was integrated with the UASB reactor, and its performance efficiency was assessed for the removal of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonium-nitrogen (NH4-N), total phosphorous (TP), and orthophosphate (PO43-). Macrophytes aboveground biomass and nutrient accumulation potential were also determined following standard methods. The results from this study showed that Cyperus alternifolius planted CW cell removed 68.5% TSS, 74.2% COD, 55.7% TN, 68.6% NH4-N, 41.1% TP and 48.1% PO43-. Moreover, further polishing with Typha latifolia planted CW cell enhanced the removal efficiencies to 89% TSS, 92% COD, 83.6% TN, 92.9% NH4-N, 74.4% TP, and 79.5% PO43-. Strong linearity and Pearson correlation was found between macrophyte biomass and nutrient accumulation in each CW cell (Cyperus alternifolius: R2 = 0.91, r = 0.97 for TN; R2 = 0.92, r = 0.96 for TP; and Typha latifolia: R2 = 0.96, r = 0.98 for TN and TP), and showed substantial nutrient reduction with cumulative nutrient accumulation of 1290 gTNm-2 and 708.7 gTPm-2 in the complete system. The performance of the pilot CW system as a tertiary treatment for brewery wastewater showed that the effluent meets the permissible discharge standards throughout the year excluding phosphorous.

10.
Bioresour Bioprocess ; 8(1): 112, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38650271

RESUMO

BACKGROUND: The critical MFC design challenge is to increase anode surface area. A novel FAB-MFC integrated system was developed and evaluated for domestic wastewater treatment. It was operated in fed-batch flow mode at 1-3 days of HRT with 755 mg/L CODIN and 0.76 kg-COD/m3/day. The study includes anaerobic-MFC and aerobic-MFC integrated systems. Microbial electrode jacket dish (MEJ-dish) with hybrid dimension (HD) was invented, first time to authors' knowledge, to boost anode biofilm growth. The treatment system with MEJ+ (FAB) and MEJ- (MFC) anode are called FAB-MFC and MFC, respectively. RESULTS: Fragmented variable anode biofilm thickness was observed in FAB than MFC. The FAB-MFC (FAB+) simple technique increases the anode biofilm thickness by ~ 5 times MFC. Due to HD the anode biofilm was fragmented in FAB+ system than MFC. At the end of each treatment cycle, voltage drops. All FAB+ integrated systems reduced voltage drop relative to MFC. FAB reduces voltage drops better than MFC in anaerobic-MFC from 6 to 20 mV and aerobic-MFC from 35-47 mV at 1 kΩ external load. The highest power density was achieved by FAB in anaerobic-MFC (FAB = 104 mW/m2, MFC = 98 mW/m2) and aerobic-MFC integrated system (FAB = 59 mW/m2, MFC = 42 mW/m2). CONCLUSIONS: The ∆COD and CE between FAB and MFC could not be concluded because both setups were inserted in the same reactor. The integrated system COD removal (78-97%) was higher than the solitary MFC treatment (68-78%). This study findings support the FAB+ integrated system could be applied for real applications and improve performance. However, it might depend on influent COD, the microbial nature, and ∆COD in FAB+ and MFC, which requires further study.

11.
Water Sci Technol ; 77(3-4): 988-998, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29488962

RESUMO

In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3- and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42-, S2- and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3-N, NH4+-N, SO42 and S2- in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.


Assuntos
Poaceae/metabolismo , Curtume , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Cromo/metabolismo , Enterobacteriaceae/isolamento & purificação , Resíduos Industriais , Nitrogênio/metabolismo , Projetos Piloto , Águas Residuárias
12.
Environ Sci Pollut Res Int ; 24(12): 11807-11815, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28342080

RESUMO

Heavy metal accumulation in agricultural crops has grown a major concern globally as a result of a significant health impact on human. The quantification of heavy metals (Cd, Pb, Cr, Zn, Cu, and Ni) in the soil and vegetables at two sites (Koka and Wonji Gefersa) was done using flame atomic absorption spectrophotometer. The mean concentrations of heavy metals in vegetable fields' soil samples obtained from Koka were higher for Pb, Cr, Zn, Cu, and Ni. The overall results of soil samples ranged 0.52-0.93, 13.6-27.3, 10.0-21.8, 44.4-88.5, 11.9-30.3, and 14.7-34.5 mg kg-1 for Cd, Pb, Cr, Zn, Cu, and Ni, respectively. The concentrations of heavy metals were maximum for Cd (0.41 ± 0.03 mg kg-1), Pb (0.54 ± 0.11 mg kg-1), Zn (14.4 ± 0.72 mg kg-1), Cu (2.84 ± 0.27 mg kg-1), and Ni (1.09 ± 0.11 mg kg-1) in Cabbage and for Cr (2.63 ± 0.11 mg kg-1) in green pepper. The result indicated that Cd has high transfer factor value and Pb was the lowest. The transfer pattern for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Cr > Ni > Pb. Among different vegetables, cabbage showed the highest value of metal pollution index and bean had the lowest value. Hazard index of all the vegetables was less than unity; thus, the consumption of these vegetables is unlikely to pose health risks to the target population.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Verduras/química , Monitoramento Ambiental , Etiópia , Fazendas , Humanos , Medição de Risco
13.
Bull Environ Contam Toxicol ; 97(5): 714-720, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27631503

RESUMO

Heavy metals are among the major contaminants of vegetables. A study was conducted at Wonji Gefersa farms where paper wastewater is used for cultivation of vegetable crops. Four vegetable samples, namely Swiss chard, carrot, tomato, green pepper, as well as paper wastewater were examined for heavy metal [Lead (Pb), Zinc (Zn), Cadmium (Cd), Iron (Fe), Copper (Cu), Chromium (Cr) and Cobalt (Co)] contamination using atomic absorption spectroscopy. The levels of Pb, Cd and Cr in paper wastewater were all above the safe limit for FAO standards for wastewater quality for irrigation. The concentration of Pb in Swiss chard and Green peeper was exceeded the permissible limits. The study reveals that Pb metal contamination in the study area which poses health risk with time unless an urgent step is taken by relevant agencies to address this issue.


Assuntos
Contaminação de Alimentos/análise , Metais Pesados/análise , Verduras/química , Águas Residuárias/análise , Cádmio/análise , Cromo/análise , Cobre/análise , Etiópia , Papel , Poluentes do Solo/análise , Zinco/análise
15.
Water Sci Technol ; 71(1): 1-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607662

RESUMO

In Africa, different studies have been conducted at different scales to evaluate wastewater treatment efficiency of constructed wetland. This paper aims to review the treatment performance efficiency of constructed wetland used in African countries. In the reviewed papers, the operational parameters, size and type of wetland used and the treatment efficiency are assessed. The results are organized and presented in six tables based on the type of wetland and wastewater used in the study. The results of the review papers indicated that most of the studies were conducted in Tanzania, Egypt and Kenya. In Kenya and Tanzania, different full-scale wetlands are widely used in treating wastewater. Among wetland type, horizontal subsurface flow wetlands were widely studied followed by surface flow and hybrid wetlands. Most of the reported hybrid wetlands were in Kenya. The results of the review papers indicated that wetlands are efficient in removing organic matter (biochemical oxygen demand and chemical oxygen demand) and suspended solids. On the other hand, nutrient removal efficiency appeared to be low.


Assuntos
Eliminação de Resíduos Líquidos/normas , Áreas Alagadas , África , Egito , Quênia , Tanzânia
16.
PLoS One ; 9(12): e115576, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541981

RESUMO

A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2-) and S(2-), 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU)--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.


Assuntos
Bactérias/classificação , Bactérias/genética , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Etiópia , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Purificação da Água/métodos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...