Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136258

RESUMO

Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.

2.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722569

RESUMO

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Assuntos
Antioxidantes , Corpo Estriado , Estresse Oxidativo , Animais , Camundongos , Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Olho/metabolismo , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Corpo Estriado/fisiologia
3.
Front Psychiatry ; 14: 1199097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547211

RESUMO

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.

4.
Front Psychiatry ; 14: 1110525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970280

RESUMO

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.

5.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565362

RESUMO

First-line drug in the treatment of glioblastoma, the most severe brain cancer, is temozolomide (TMZ), a DNA-methylating agent that induces the critical damage O6-methylguanine (O6MeG). This lesion is cytotoxic through the generation of mismatch repair-mediated DNA double-strand breaks (DSBs), which trigger apoptotic pathways. Previously, we showed that O6MeG also induces cellular senescence (CSEN). Here, we show that TMZ-induced CSEN is a late response which has similar kinetics to apoptosis, but at a fourfold higher level. CSEN cells show a high amount of DSBs, which are located outside of telomeres, a high level of ROS and oxidized DNA damage (8-oxo-guanine), and sustained activation of the DNA damage response and histone methylation. Despite the presence of DSBs, CSEN cells are capable of repairing radiation-induced DSBs. Glioblastoma cells that acquired resistance to TMZ became simultaneously resistant to TMZ-induced CSEN. Using a Tet-On glioblastoma cell system, we show that upregulation of MGMT immediately after TMZ completely abrogated apoptosis and CSEN, while induction of MGMT long-term (>72 h) after TMZ did not reduce apoptosis and CSEN. Furthermore, upregulation of MGMT in the senescent cell population had no impact on the survival of senescent cells, indicating that O6MeG is required for induction, but not for maintenance of the senescent state. We further show that, in recurrent GBM specimens, a significantly higher level of DSBs and CSEN-associated histone H3K27me3 was observed than in the corresponding primary tumors. Overall, the data indicate that CSEN is a key node induced in GBM following chemotherapy.

6.
Biomedicines ; 10(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052687

RESUMO

Aldehyde dehydrogenase 1 isoforms A1 and A3 have been implicated as functional biomarkers associated with distinct molecular subtypes of glioblastoma and glioblastoma stem cells. However, the exact roles of these isoforms in different types of glioma cells remain unclear. The purpose of this study was to dissect the association of A1 or A3 isoforms with stem and non-stem glioblastoma cells. This study has undertaken a systematic characterization of A1 and A3 proteins in glioblastoma tissues and a panel of glioblastoma stem cells using immunocytochemical and immunofluorescence staining, Western blot and the subcellular fractionation methodology. Our main findings are (i) human GSCs express uniformly ALDH1A3 but not the ALDH1A1 isoform whereas non-stem glioma cells comparably express both isoforms; (ii) there is an abundance of ALDH1A3 peptides that prevail over the full-length form in glioblastoma stem cells but not in non-stem glioma cells; (iii) full-length ALDH1A3 and ALDH1A3 peptides are spatially segregated within the cell; and (vi) the abundance of full-length ALDH1A3 and ALDH1A3 peptides is sensitive to MG132-mediated proteasomal inhibition. Our study further supports the association of ALDH1A3 with glioblastoma stem cells and provide evidence for the regulation of ALDH1A3 activities at the level of protein turnover.

7.
Front Neuroanat ; 14: 593793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328905

RESUMO

Introduction: The endocannabinoid system is involved in several diseases such as addictive disorders, schizophrenia, post-traumatic stress disorder, and eating disorders. As often mice are used as the preferred animal model in translational research, in particular when using genetically modified mice, this study aimed to provide a systematic analysis of in vivo cannabinoid type 1 (CB1) receptor ligand-binding capacity using positron emission tomography (PET) using the ligand [18F]MK-9470. We then compared the PET results with literature data from immunohistochemistry (IHC) to review the consistency between ex vivo protein expression and in vivo ligand binding. Methods: Six male C57BL/6J (6-9 weeks) mice were examined with the CB1 receptor ligand [18F]MK-9470 and small animal PET. Different brain regions were evaluated using the parameter %ID/ml. The PET results of the [18F]MK-9470 accumulation in the mouse brain were compared with immunohistochemical literature data. Results: The ligand [18F]MK-9470 was taken up into the mouse brain within 5 min after injection and exhibited slow kinetics. It accumulated highly in most parts of the brain. PET and IHC classifications were consistent for most parts of the telencephalon, while brain regions of the diencephalon, mesencephalon, and rhombencephalon were rated higher with PET than IHC. Conclusions: This preclinical [18F]MK-9470 study demonstrated the radioligand's applicability for imaging the region-specific CB1 receptor availability in the healthy adult mouse brain and thus offers the potential to study CB1 receptor availability in pathological conditions.

8.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053798

RESUMO

Up to 60% of atypical meningiomas (World Health Organization (WHO) grade II) reoccur within 5 years after resection. However, no clear radiological criteria exist to identify tumors with higher risk of relapse. In this study, we aimed to assess the association of certain radiomic and semantic features of atypical meningiomas in MRI with tumor recurrence. We identified patients operated on primary atypical meningiomas in our department from 2007 to 2017. An analysis of 13 quantitatively defined radiomic and 11 qualitatively defined semantic criteria was performed based on preoperative MRI scans. Imaging characteristics were assessed along with clinical and survival data. The analysis included 76 patients (59% women, mean age 59 years). Complete tumor resection was achieved in 65 (86%) cases, and tumor relapse occurred in 17 (22%) cases. Mean follow-up time was 41.6 (range 3-168) months. Cystic component was significantly associated with tumor recurrence (odds ratio (OR) 21.7, 95% confidence interval (CI) 3.8-124.5) and shorter progression-free survival (33.2 vs. 80.7 months, p < 0.001), whereas radiomic characteristics had no predictive value in univariate analysis. However, multivariate analysis demonstrated significant predictive value of high cluster prominence (hazard ratio (HR) 5.89 (1.03-33.73) and cystic component (HR 20.21 (2.46-166.02)) for tumor recurrence. The combination of radiomic and semantic features might be an effective tool for identifying patients with high-risk atypical meningiomas. The presence of a cystic component in these tumors is associated with a high risk of tumor recurrence.

9.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357555

RESUMO

Glycoprotein A repetition predominant (GARP), a specific surface molecule of activated regulatory T cells, has been demonstrated to significantly contribute to tolerance in humans by induction of peripheral Treg and regulatory M2-macrophages and by inhibition of (tumorantigen-specific) T effector cells. Previous work identified GARP on Treg, and also GARP on the surface of several malignant tumors, as well as in a soluble form being shedded from their surface, contributing to tumor immune escape. Preliminary results also showed GARP expression on brain metastases of malignant melanoma. On the basis of these findings, we investigated whether GARP is also expressed on primary brain tumors. We showed GARP expression on glioblastoma (GB) cell lines and primary GB tissue, as well as on low-grade glioma, suggesting an important influence on the tumor micromilieu and the regulation of immune responses also in primary cerebral tumors. This was supported by the finding that GB cells led to a reduced, in part GARP-dependent effector T cell function (reduced proliferation and reduced cytokine secretion) in coculture experiments. Interestingly, GARP was localized not only on the cell surface but also in the cytoplasmatic, as well as nuclear compartments in tumor cells. Our findings reveal that GARP, as an immunoregulatory molecule, is located on, as well as in, tumor cells of GB and low-grade glioma, inhibiting effector T cell function, and thus contributing to the immunosuppressive tumor microenvironment of primary brain tumors. As GARP is expressed on activated Treg, as well as on brain tumors, it may be an interesting target for new immunotherapeutic approaches using antibody-based strategies as this indication.


Assuntos
Glioblastoma/etiologia , Glioblastoma/metabolismo , Imunomodulação , Proteínas de Membrana/metabolismo , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Terapia Combinada , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Imuno-Histoquímica , Imunomodulação/genética , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Gradação de Tumores , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/genética
10.
Brain Struct Funct ; 223(7): 3463-3471, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936552

RESUMO

The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies, which may trigger vascular thrombosis with consecutive infarcts. However, cognitive dysfunctions representing one of the most commonest neuropsychiatric symptoms are frequently present despite the absence of any ischemic brain lesions. Data on the structural and functional basis of the neuropsychiatric symptoms are sparse. To examine the effect of APS on hippocampal neurogenesis and on white matter, we induced experimental APS (eAPS) in adult female Balb/C mice by immunization with ß2-glycoprotein 1. To investigate cell proliferation in the dentate gyrus granular cell layer (DG GCL), eAPS and control mice (n = 5, each) were injected with 5-bromo-2'-deoxyuridine (BrdU) once a day for 10 subsequent days. Sixteen weeks after immunization, eAPS resulted in a significant reduction of BrdU-positive cells in the DG GCL compared to control animals. However, double staining with doublecortin and NeuN revealed a largely preserved neurogenesis. Ultrastructural analysis of corpus callosum (CC) axons in eAPS (n = 6) and control mice (n = 7) revealed no significant changes in CC axon diameter or g-ratio. In conclusion, decreased cellular proliferation in the hippocampus of eAPS mice indicates a limited regenerative potential and may represent one neuropathological substrate of cognitive changes in APS while evidence for alterations of white matter integrity is lacking.


Assuntos
Síndrome Antifosfolipídica/induzido quimicamente , Síndrome Antifosfolipídica/patologia , Proliferação de Células , Giro Denteado/patologia , Animais , Anticorpos Antifosfolipídeos/metabolismo , Autoantígenos/farmacologia , Escala de Avaliação Comportamental , Bromodesoxiuridina/administração & dosagem , Bromodesoxiuridina/metabolismo , Diferenciação Celular/fisiologia , Corpo Caloso/ultraestrutura , Modelos Animais de Doenças , Feminino , Fluorescência , Camundongos , Camundongos Endogâmicos BALB C , Neurogênese , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/metabolismo , beta 2-Glicoproteína I/farmacologia
11.
Oncotarget ; 7(28): 42996-43009, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27248166

RESUMO

In melanoma patients, one of the main reasons for tumor immune escape and therapy failure is the immunosuppressive tumor microenvironment. Herein, suppressive immune cells and inhibitory factors secreted by the tumor itself play a central role.In the present study we show that the Treg activation marker GARP (glycoprotein A repetitions predominant), known to induce peripheral tolerance in a TGF-ß dependent way, is also expressed on human primary melanoma. Interestingly, membrane bound GARP is shed from the surface of both, activated Treg and melanoma cells, and, in its soluble form (sGARP), not only induces peripheral Treg but also a tumor associated (M2) macrophage phenotype. Notably, proliferation of cytotoxic T cells and their effector function is inhibited in the presence of sGARP. GARP expression on Treg and melanoma cells is significantly decreased in the presence of agents such as IFN-α, thus explaining at least in part a novel mechanism of action of this adjuvant therapy.In conclusion, GARP in its soluble and membrane bound form contributes to peripheral tolerance in a multipronged way, potentiates the immunosuppressive tumor microenvironment and thus acts as a negative regulator in melanoma patients. Therefore, it may qualify as a promising target and a new checkpoint for cancer immunotherapy.


Assuntos
Melanoma/imunologia , Proteínas de Membrana/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/genética
12.
PLoS One ; 11(1): e0146679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752421

RESUMO

We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 µg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 µg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.


Assuntos
Dendritos/patologia , Luz , Plasticidade Neuronal , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Terapia Combinada , Dendritos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Masculino , Movimento , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos
13.
Crit Care Med ; 44(5): e253-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26496445

RESUMO

OBJECTIVE: Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Adult anesthetized pigs. INTERVENTIONS: Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS: Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS: Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Animais , Gasometria , Oxigenação por Membrana Extracorpórea/métodos , Mediadores da Inflamação/metabolismo , Atelectasia Pulmonar/prevenção & controle , RNA Complementar/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
PLoS One ; 10(10): e0140613, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485029

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with anti-tumorigenic effects in different tumor entities. For glioma, research has generally focused on diclofenac; however data on other NSAIDs, such as ibuprofen, is limited. Therefore, we performed a comprehensive investigation of the cellular, molecular, and metabolic effects of ibuprofen and diclofenac on human glioblastoma cells. METHODS: Glioma cell lines were treated with ibuprofen or diclofenac to investigate functional effects on proliferation and cell motility. Cell cycle, extracellular lactate levels, lactate dehydrogenase-A (LDH-A) expression and activity, as well as inhibition of the Signal Transducer and Activator of Transcription 3 (STAT-3) signaling pathway, were determined. Specific effects of diclofenac and ibuprofen on STAT-3 were investigated by comparing their effects with those of the specific STAT-3 inhibitor STATTIC. RESULTS: Ibuprofen treatment led to a stronger inhibition of cell growth and migration than treatment with diclofenac. Proliferation was affected by cell cycle arrest at different checkpoints by both agents. In addition, diclofenac, but not ibuprofen, decreased lactate levels in all concentrations used. Both decreased STAT-3 phosphorylation; however, diclofenac led to decreased c-myc expression and subsequent reduction in LDH-A activity, whereas treatment with ibuprofen in higher doses induced c-myc expression and less LDH-A alteration. CONCLUSIONS: This study indicates that both ibuprofen and diclofenac strongly inhibit glioma cells, but the subsequent metabolic responses of both agents are distinct. We postulate that ibuprofen may inhibit tumor cells also by COX- and lactate-independent mechanisms after long-term treatment in physiological dosages, whereas diclofenac mainly acts by inhibition of STAT-3 signaling and downstream modulation of glycolysis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diclofenaco/farmacologia , Glioma/patologia , Ibuprofeno/farmacologia , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
15.
PLoS One ; 9(9): e108632, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268354

RESUMO

BACKGROUND: High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist. METHODS: In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a) to enrich specimens for brain tumor initiating cells and (b) to confront cells with a therapeutic agent before expression profiling. RESULTS: As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC) before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro. CONCLUSION: For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirróis/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Farmacológicos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Análise em Microsséries , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Sunitinibe , Células Tumorais Cultivadas
16.
J Neurooncol ; 120(1): 73-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064688

RESUMO

Versican is a large chondroitin sulphate proteoglycan produced by several tumor cell types, including high-grade gliomas. Increased expression of distinct versican isoforms in the extracellular matrix plays a role in tumor cell growth, adhesion and migration. We have recently shown that transforming growth factor (TGF-beta)2, an important modulator of glioma invasion, interacts with versican isoforms V0/V1 during malignant progression of glioma in vitro. However, the distinct subtype of versican that modulates these effects could not be specified. Here, we show that transient down-regulation of V1 by siRNA leads to a significant reduction of proliferation and migration in glioblastoma cell lines and glioblastoma progenitor cells, whereas tumor cell attachment stays unaffected. We conclude that V1 plays a predominant role in modulating central pathophysiological mechanisms as proliferation and migration in glioblastoma. Considering that TGF-beta is a master regulator of glioma pathophysiology, and that V0/1 is induced by TGF-beta2, therapeutic regulation of V1 may induce meaningful effects on glioma cell migration not only in vitro, but also in vivo.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Versicanas/metabolismo , Apoptose , Western Blotting , Adesão Celular , Progressão da Doença , Matriz Extracelular , Glioma/genética , Glioma/metabolismo , Humanos , Gradação de Tumores , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Imagem com Lapso de Tempo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Células Tumorais Cultivadas , Versicanas/antagonistas & inibidores , Versicanas/genética
17.
PLoS One ; 8(11): e78935, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223867

RESUMO

BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.


Assuntos
Movimento Celular/efeitos dos fármacos , Ácido Láctico/farmacologia , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Ácido Láctico/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombospondina 1/genética , Ativação Transcricional/efeitos dos fármacos , Fator de Crescimento Transformador beta2/genética , Células Tumorais Cultivadas
18.
Int J Cancer ; 132(4): 843-53, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22752934

RESUMO

Lactate formation in highly proliferative tumors such as malignant gliomas is associated with poor survival and contributes to the suppression of local immunity. Here, we report that diclofenac used at nontoxic concentrations significantly decreased lactate production in murine glioma cells and inhibited the expression of lactate dehydrogenase-A in vitro. Lactate reduction was accompanied by a dose-dependent inhibition of cell growth and a cell cycle arrest at the G2/M checkpoint. In the presence of diclofenac, murine bone marrow-derived dendritic cells (DCs) showed enhanced IL-12, but decreased IL-10 secretion on Toll-like receptor stimulation with R848 that correlated with reduced lactate levels in the glioma cell coculture and a blockade of signal transducers and activators of transcription 3 phosphorylation. In vivo, diclofenac treatment diminished intratumoral lactate levels and resulted in a significant delay of glioma growth. Ex vivo analyses revealed that tumor-infiltrating DCs regained their capacity to produce IL-12 on R848 stimulation. Moreover, diclofenac reduced the number of tumor-infiltrating regulatory T cells and impaired the upregulation of the Treg activation marker CD25. Nevertheless, a single intratumoral injection of R848 combined with diclofenac failed to induce an additional survival advantage in glioma-bearing mice. Further analyses illustrated that the presence of diclofenac during T-cell activation compromised INF-γ production and T-cell proliferation, indicating that immunotherapeutic approaches have to be carefully timed when combined with diclofenac. In summary, diclofenac appears as an attractive agent for targeting lactate production and counteracting local immune suppression in malignant gliomas.


Assuntos
Células Dendríticas/imunologia , Diclofenaco/farmacologia , Glioma/imunologia , Glioma/metabolismo , Ácido Láctico/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células da Medula Óssea/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Glioma/tratamento farmacológico , Imidazóis/farmacologia , Tolerância Imunológica , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Isoenzimas/biossíntese , Isoenzimas/metabolismo , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Ativação Transcricional , Regulação para Cima
19.
Stem Cells Dev ; 21(15): 2753-61, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22676416

RESUMO

Immune cell infiltration varies widely between different glioblastomas (GBMs). The underlying mechanism, however, remains unknown. Here we show that TGF-beta regulates proliferation, migration, and tumorigenicity of mesenchymal GBM cancer stem cells (CSCs) in vivo and in vitro. In contrast, proneural GBM CSCs resisted TGF-beta due to TGFR2 deficiency. In vivo, a substantially increased infiltration of immune cells was observed in mesenchymal GBMs, while immune infiltrates were rare in proneural GBMs. On a functional level, proneural CSC lines caused a significantly stronger TGF-beta-dependent suppression of NKG2D expression on CD8(+) T and NK cells in vitro providing a mechanistic explanation for the reduced immune infiltration of proneural GBMs. Thus, the molecular subtype of CSCs TGF-beta-dependently contributes to the degree of immune infiltration.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Células-Tronco Neoplásicas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Fatores Imunológicos/fisiologia , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteína Smad2/metabolismo , Linfócitos T Citotóxicos/patologia , Ativação Transcricional , Transcriptoma , Fator de Crescimento Transformador beta/fisiologia , Carga Tumoral/imunologia
20.
Neuro Oncol ; 11(4): 368-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19033423

RESUMO

Lactate dehydrogenase type A (LDH-A) is a key metabolic enzyme catalyzing pyruvate into lactate and is excessively expressed by tumor cells. Transforming growth factor-beta2 (TGF-beta2) is a key regulator of invasion in high-grade gliomas, partially by inducing a mesenchymal phenotype and by remodeling the extracellular matrix. In this study, we tested the hypothesis that lactate metabolism regulates TGF-beta2-mediated migration of glioma cells. Small interfering RNA directed against LDH-A (siLDH-A) suppresses, and lactate induces, TGF-beta2 expression, suggesting that lactate metabolism is strongly associated with TGF-beta2 in glioma cells. Here we demonstrate that TGF-beta2 enhances expression, secretion, and activation of matrix metalloproteinase-2 (MMP-2) and induces the cell surface expression of integrin alpha(v)beta(3) receptors. In spheroid and Boyden chamber migration assays, inhibition of MMP-2 activity using a specific MMP-2 inhibitor and blocking of integrin alpha(v)beta(3) abrogated glioma cell migration stimulated by TGF-beta2. Furthermore, siLDH-A inhibited MMP2 activity, leading to inhibition of glioma migration. Taken together, we define an LDH-A-induced and TGF-beta2-coordinated regulatory cascade of transcriptional regulation of MMP-2 and integrin alpha(v)beta(3). This novel interaction between lactate metabolism and TGF-beta2 might constitute a crucial mechanism for glioma migration.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Glioma/patologia , Integrina alfaVbeta3/metabolismo , L-Lactato Desidrogenase/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Neoplasias Encefálicas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glucose/análise , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Isoenzimas/fisiologia , Lactato Desidrogenase 5 , Inibidores de Metaloproteinases de Matriz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...