Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(12): 5851-5858, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37067172

RESUMO

The ultrasmall mode volume and ultralarge local field enhancement of compact plasmonic nanocavities have been widely explored to amplify a variety of optical phenomena at the nanoscale. Other than passively generating near-field enhancements, dynamic tuning of their intensity and associated nonlinear optical processes such as second-harmonic generation (SHG) play vital roles in the field of active nanophotonics. Here we apply a host-guest molecular complex to construct a photoswitchable molecule-sandwiched metallic particle-on-film nanocavity (MPoFN) and demonstrate both light-controlled linear and nonlinear optical tuning. Under alternating illumination of ultraviolet (UV) and visible light, the photoactive plasmonic molecular nanocavity shows reversible switching of both surface-enhanced Raman scattering (SERS) and plasmon resonance. Surprisingly, we observe more significant modulation of SHG from this photoactive MPoFN, which can be explained qualitatively by the quantum conductivity theory (QCT). Our study could pave the way for developing miniaturized integrated optical circuits for ultrafast all-optical information processing and communication.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985943

RESUMO

Transistors made up of carbon nanotube CNT have demonstrated excellent current-voltage characteristics which outperform some high-grade silicon-based transistors. A continuously tunable energy barrier across semiconductor interfaces is desired to make the CNT-based transistors more robust. Despite that the direct band gap of the carbyne inside a CNT can be widely tuned by strain, the size of the carbyne cannot be controlled easily. The production of a monoatomic chain with more than 6000 carbon atoms is an enormous technological challenge. To predict the optimal chain length of a carbyne in different molecular environments, we have developed a Monte Carlo model in which a finite-length carbyne with a size of 4000-15,000 atoms is encapsulated by a CNT at finite temperatures. Our simulation shows that the stability of the carbyne@nanotube is strongly influenced by the nature and porosity of the CNT, the external pressure, the temperature, and the chain length. We have observed an initiation of the chain-breaking process in a compressed carbyne@nanotube. Our work provides much-needed input for optimizing the carbyne length to produce carbon chains much longer than 6000 atoms at ~300 K. Design rules are proposed for synthesizing ~1% strained carbyne@(6,5)CNT as a component in CNT-based transistors to tune the energy barriers continuously.

3.
Mater Horiz ; 9(6): 1670-1678, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470363

RESUMO

Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.

4.
Nano Lett ; 22(5): 1915-1921, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225629

RESUMO

Spin-forbidden excitons in monolayer transition metal dichalcogenides are optically inactive at room temperature. Probing and manipulating these dark excitons are essential for understanding exciton spin relaxation and valley coherence of these 2D materials. Here, we show that the coupling of dark excitons to a metal nanoparticle-on-mirror cavity leads to plasmon-induced resonant emission with the intensity comparable to that of the spin-allowed bright excitons. A three-state quantum model combined with full-wave electrodynamic calculations reveals that the radiative decay rate of the dark excitons can be enhanced by nearly 6 orders of magnitude through the Purcell effect, therefore compensating its intrinsic nature of weak radiation. Our nanocavity approach provides a useful paradigm for understanding the room-temperature dynamics of dark excitons, potentially paving the road for employing dark exciton in quantum computing and nanoscale optoelectronics.

5.
Small ; 17(39): e2103301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34473395

RESUMO

The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).

6.
ACS Appl Mater Interfaces ; 13(23): 27313-27322, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34100286

RESUMO

Considering that the periodic photonic nanostructures are commonly realized by expensive nanofabrication processes and the tunability of structure parameters is limited and complicated, we demonstrate a solution-processed upside-down molding method to fabricate photonic resonators on perovskites with a pattern geometry controllable to a certain extent. This upside-down approach not only reveals the effect of capillary force during the imprinting but also can control the waveguide layer thickness due to the inversion of the perovskite membranes.

7.
ACS Appl Mater Interfaces ; 12(50): 56541-56548, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33283518

RESUMO

Most previous attempts on achieving electric-field manipulation of ferromagnetism in complex oxides, such as La0.66Sr0.33MnO3 (LSMO), are based on electrostatically induced charge carrier changes through high-k dielectrics or ferroelectrics. Here, the use of a ferroelectric copolymer, polyvinylidene fluoride with trifluoroethylene [P(VDF-TrFE)], as a gate dielectric to successfully modulate the ferromagnetism of the LSMO thin film in a field-effect device geometry is demonstrated. Specifically, through the application of low-voltage pulse chains inadequate to switch the electric dipoles of the copolymer, enhanced tunability of the oxide magnetic response is obtained, compared to that induced by ferroelectric polarization. Such observations have been attributed to electric field-induced oxygen vacancy accumulation/depletion in the LSMO layer upon the application of pulse chains, which is supported by surface-sensitive-characterization techniques, including X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism. These techniques not only unveil the electrochemical nature of the mechanism but also establish a direct correlation between the oxygen vacancies created and subsequent changes to the valence states of Mn ions in LSMO. These demonstrations based on the pulsing strategy can be a viable route equally applicable to other functional oxides for the construction of electric field-controlled magnetic devices.

8.
Parasit Vectors ; 13(1): 361, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690078

RESUMO

BACKGROUND: The mosquito Aedes albopictus is a vector of dengue and Zika viruses. Insecticide-resistant mosquito populations have evolved in recent decades, suggesting that new control strategies are needed. Hong Kong has a monsoon-influenced humid subtropical climate, which favours the spread of mosquitoes. However, baseline information on the composition and dynamics of the occurrence of endosymbiont Wolbachia in local Ae. albopictus is lacking, hindering the development of scientifically-informed control measures. This study identifies the presence and absence of dengue and Zika viruses, and Wolbachia infection in Aedes albopictus in Hong Kong. METHODS: Oviposition traps were set at 57 areas in Hong Kong, and both immature and adult mosquitoes were collected on a monthly basis between April 2018 and April 2019 as the study sample. Each individual mosquito in this sample was processed and screened for the presence of the dengue and Zika viruses and the endosymbionts Wolbachia wAlbA and wAlbB with PCR. RESULTS: Totals of 967 and 984 mosquitoes were tested respectively for the presence of dengue and Zika viruses, and no trace of either infection was found in these samples. The presence of wAlbA and wAlbB was also tested in 1582 individuals. Over 80% of these individuals were found to be stably infected with Wolbachia throughout the thirteen-month collection period (~ 47% singly-infected; ~ 36.8% doubly infected with both wAlbA and wAlbB). CONCLUSIONS: The high degree of Wolbachia wAlbA and wAlbB infection in Ae. albopictus mosquitoes in Hong Kong, coupled with the absence of any signs of infection by dengue and Zika viruses, contrasts significantly with the pattern of mosquito infection in other parts of Asia. Further studies of the infection pattern in local mosquitoes are warranted before mosquito control strategies used in other regions are implemented in Hong Kong.


Assuntos
Aedes , Vírus da Dengue/isolamento & purificação , Prevalência , Wolbachia/isolamento & purificação , Zika virus/isolamento & purificação , Aedes/microbiologia , Aedes/virologia , Animais , Dengue/transmissão , Hong Kong/epidemiologia , Mosquitos Vetores/virologia , Patologia Molecular , Reação em Cadeia da Polimerase , Simbiose , Infecção por Zika virus/transmissão
9.
ACS Nano ; 14(6): 7077-7084, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32407078

RESUMO

Integration of transition metal dichalcogenides (TMDs) on ferromagnetic materials (FM) may yield fascinating physics and promise for electronics and spintronic applications. In this work, high-temperature anomalous Hall effect (AHE) in the TMD ZrTe2 thin film using a heterostructure approach by depositing it on a ferrimagnetic insulator YIG (Y3Fe5O12, yttrium iron garnet) is demonstrated. In this heterostructure, significant anomalous Hall effect can be observed at temperatures up to at least 400 K, which is a record high temperature for the observation of AHE in TMDs, and the large RAHE is more than 1 order of magnitude larger than those previously reported values in topological insulators or TMD-based heterostructures. A complicated interface with additional ZrO2 and amorphous YIG layers is actually observed between ZrTe2 and YIG. The magnetization of interfacial reaction-induced ZrO2 and YIG is believed to play a crucial role in the induced high-temperature AHE in the ZrTe2. These results present a promising system for the spintronic device applications, and it may shed light on the designing approach to introduce magnetism to TMDs at room temperature.

10.
Angew Chem Int Ed Engl ; 59(28): 11521-11526, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32243037

RESUMO

Self-assembly of d8 metal polypyridine systems is a well-established approach for the creation of 1D organometallic assemblies but there are still challenges for the large-scale construction of nanostructured patterns from these building blocks. We describe herein the use of high-throughput nanoimprint lithography (NIL) to direct the self-assembly of the bimetallic complexes [4'-ferrocenyl-(2,2':6',2''-terpyridine)M(OAc)]+ (OAc)- (M=Pd or Pt; OAc=acetate). Uniform nanorods are fabricated from the molecular self-organization and evidenced by morphological characterization. More importantly, when top-down NIL is coupled with the bottom-up self-assembly of the organometallic building blocks, regular arrays of nanorods can be accessed and the patterns can be controlled by changing the lithographic stamp, where the mold imposes a confinement effect on the nanorod growth. In addition, patterns consisting of the products formed after pyrolysis are studied. The resulting arrays of ferromagnetic FeM alloy nanorods suggest promising potential for the scalable production of ordered magnetic arrays and fabrication of magnetic bit-patterned media.

11.
ACS Appl Mater Interfaces ; 12(11): 13437-13446, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32088951

RESUMO

Tin-doped indium oxide (ITO)/Au/ITO sandwich structures with varying top and bottom ITO film thicknesses were deposited by magnetron sputtering. The effects of varying thickness of the two ITO films on the structural, electrical, and optical properties of the sandwich structures were investigated. X-ray diffraction spectra showed that by inserting an ultrathin Au film, the average grain size of the top ITO layer was significantly increased, but not for the bottom one. The optical properties of the sandwich structures were measured by transmittance measurement and spectroscopic ellipsometry. In the symmetric structure, where the top and the bottom ITO layers had the same thickness, we demonstrated that the crossover wavelength can be changed from the visible range (830 nm) to the near-infrared range (1490 nm) by increasing the top as well as bottom ITO thickness, corresponding to a plasmonic tuning ability of over 600 nm. The evaluation of this trilayer structure as a plasmonic device was asserted based on three quality factors. A comparison of the performance of this trilayer structure with conventional materials was also discussed.

12.
ACS Appl Mater Interfaces ; 11(51): 48331-48340, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31774259

RESUMO

A highly transparent and flexible percolative composite with magnetic reduced graphene oxide@nickel nanowire (mGN) fillers in EcoFlex matrix is proposed as a sensing layer to fabricate high-performance flexible piezoresistive sensors. Large excluded volume and alignment of mGN fillers contribute to low percolation threshold (0.27 vol %) of mGN-EcoFlex composites, leading to high electrical conductivity of 0.003 S m-1, optical transmittance of 71.8%, and low Young's modulus of 122.8 kPa. Large-scale microdome templates for sensors are prepared by hot embossing technology cost-effectively and COMSOL Multiphysics is utilized to optimize the sensor performances. Piezoresistive sensors fabricated experimentally show superior average sensitivity of 1302.1 kPa-1 with a low device-to-device variation of 3.74%, which provides a new way to achieve transparent, highly sensitive, and large-scale electronic skin.

13.
Nanotechnology ; 30(38): 385603, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31174195

RESUMO

Ni@Ag core shell nanowires (NWs) were prepared by in situ chemical reduction of Ag+ around NiNWs as the inner core. Different Ni@Ag NWs with controllable morphologies were achieved through the layer-plus-island growth mode and this mechanism was confirmed by scanning electron microscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy analyses. When used as a catalyst, the synthesized Ni@Ag NWs exhibited high reduction efficiency by showing a high reaction rate constant k of 0.408 s-1 in reducing 4-nitrophenol at room temperature. Besides, combining the magnetic property, including high saturation magnetization and low coercivity, the magnetic NiNW core contributes to excellent recyclability and long-term stability with only a 2.2% performance loss after 10 recycles by magnets. The Ni@Ag NWs proposed here show unprecedentedly high potential in applications requiring high efficiency and a recyclable catalyst.

14.
ACS Nano ; 13(1): 681-688, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30475583

RESUMO

The nucleation of crystals from ubiquitous solid-state reactions impacts a wide range of natural and synthetic processes and is fundamental to physical and chemical synthesis. However, the microscopic organization mechanism of amorphous precursors to nanoscale clusters of ordered atoms (nucleus) in an all-solid environment is inaccessible by common experimental probes. Here, by using in situ transmission electron microscopy in combination with theoretical simulations, we show in the reactive formation of a metal carbide that nucleation actually occurs via a two-step mechanism, in which a spinodal-structured amorphous intermediate reorganizes from an amorphous precursor and precedes the emergence of a crystalline nucleus, rather than direct one-step nucleation from classical consideration. We further isolated a series of sophisticated dynamics during formation and development of the nucleus in real-space and interpreted them by thermodynamic favorability. We anticipate that such an indirect organization mechanism which contains a metastable intermedium among the free energy gap between precursors and nanocrystals has its chance in underlying most solid-state crystallizations, whereas the as-established experimental method represents a step forward in exploring fundamentals in chemical reaction, material engineering, etc.

15.
Nanoscale ; 10(4): 1727-1734, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29308498

RESUMO

WSe2 has attracted extensive attention for p-FETs due to its air stability and high mobility. However, the Fermi level of WSe2 is close to the middle of the band gap, which will induce a high contact resistance with metals and thus limit the field effect mobility. In this case, a high work voltage is always required to achieve a large ON/OFF ratio. Herein, a stable WSe2 p-doping technique of coating using a ferroelectric relaxor polymer P(VDF-TrFE-CFE) is proposed. Unlike other doping methods, P(VDF-TrFE-CFE) not only can modify the Fermi level of WSe2 but can also act as a high-k gate dielectric in an FET. Dramatic enhancement of the field effect hole mobility from 27 to 170 cm2 V-1 s-1 on a six-layer WSe2 FET has been achieved. Moreover, an FET device based on bilayer WSe2 with P(VDF-TrFE-CFE) as the top gate dielectric is fabricated, which exhibits high p-type performance over a low top gate voltage range. Furthermore, low-temperature experiments reveal the influence of the phase transition of P(VDF-TrFE-CFE) on the channel carrier density and mobility. With a decrease in temperature, field effect hole mobility increases and approaches up to 900 cm2 V-1 s-1 at 200 K. The combination of the p-doping and gating with P(VDF-TrFE-CFE) provides a promising solution for obtaining high-performance p-FET with 2D semiconductors.

16.
RSC Adv ; 8(5): 2477-2484, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35541460

RESUMO

Layered metal sulfides (MoS2, WS2, SnS2, and SnS) offer high potential as advanced anode materials in sodium ion batteries upon integration with highly-conductive graphene materials. However, in addition to being costly and time-consuming, existing strategies for synthesizing sulfides/graphene composites often involve complicated procedures. It is therefore essential to develop a simple yet scalable pathway to construct sulfide/graphene composites for practical applications. Here, we highlight a one-step, template-free, high-throughput "self-bubbling" method for producing MoS2/graphene composites, which is suitable for large-scale production of sulfide/graphene composites. The final product featured MoS2 nanoflakes distributed in three-dimensional macroporous monolithic graphene. Moreover, this unique MoS2/graphene composite achieved remarkable electrochemical performance when being applied to Na-ion battery anodes; namely, excellent cycling stability (474 mA h g-1 at 0.1 A g-1 after 100 cycles) and high rate capability (406 mA h g-1 at 0.25 A g-1 and 359 mA h g-1 at 0.5 A g-1). This self-bubbling approach should be applicable to delivering other graphene-based composites for emerging applications such as energy storage, catalysis, and sensing.

17.
ACS Nano ; 11(7): 6950-6958, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28686411

RESUMO

Room-temperature magnetoresistance (MR) effect is observed in heterostructures of wafer-scale MoS2 layers and ferromagnetic dielectric CoFe2O4 (CFO) thin films. Through the ferromagnetic gating, an MR ratio of -12.7% is experimentally achieved in monolayer MoS2 under 90 kOe magnetic field at room temperature (RT). The observed MR ratio is much higher than that in previously reported nonmagnetic metal coupled with ferromagnetic insulator, which generally exhibited MR ratio of less than 1%. The enhanced MR is attributed to the spin accumulation at the heterostructure interface and spin injection to the MoS2 layers by the strong spin-orbit coupling effect. The injected spin can contribute to the spin current and give rise to the MR by changing the resistance of MoS2 layers. Furthermore, the MR effect decreases as the thickness of MoS2 increases, and the MR ratio becomes negligible in MoS2 with thickness more than 10 layers. Besides, it is interesting to find a magnetic field direction dependent spin Hall magnetoresistance that stems from a combination of the spin Hall and the inverse spin Hall effects. Our research provides an insight into exploring RT MR in monolayer materials, which should be helpful for developing ultrathin magnetic storage devices in the atomically thin limit.

18.
Nanoscale ; 9(2): 731-738, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27959375

RESUMO

L10-ordered FePt nanoparticles (NPs) with ultra-high coercivity were directly prepared from a new metallopolyyne using a one-step pyrolysis method. The chemical ordering, morphology and magnetic properties of the as-synthesized FePt NPs have been studied. Magnetic measurements show the coercivity of these FePt NPs is as high as 3.6 T. Comparison of NPs synthesized under the Ar and Ar/H2 atmospheres shows that the presence of H2 in the annealing environment influences the nucleation and promotes the growth of L10-FePt NPs. Application of this metallopolymer for bit-patterned media was also demonstrated using nanoimprint lithography.

19.
Nano Lett ; 16(12): 7875-7881, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960485

RESUMO

With a similar electronic structure as that of platinum, molybdenum carbide (Mo2C) holds significant potential as a high performance catalyst across many chemical reactions. Empirically, the precise control of particle size, shape, and surface nature during synthesis largely determines the catalytic performance of nanoparticles, giving rise to the need of clarifying the underlying growth characteristics in the nucleation and growth of Mo2C. However, the high-temperature annealing involved during the growth of carbides makes it difficult to directly observe and understand the nucleation and growth processes. Here, we report on the use of advanced in situ transmission electron microscopy with atomic resolution to reveal a three-stage mechanism during the growth of Mo2C nanoparticles over a wide temperature range: initial nucleation via a mechanism consistent with spinodal decomposition, subsequent particle coalescence and monomer attachment, and final surface faceting to well-defined particles with minimum surface energy. These microscopic observations made under a heating atmosphere offer new perspectives toward the design of carbide-based catalysts, as well as the tuning of their catalytic performances.

20.
Nanoscale Res Lett ; 11(1): 189, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27067737

RESUMO

Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...