Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725854

RESUMO

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Assuntos
Diosgenina/análogos & derivados , Glicólise , Neovascularização Patológica , Neoplasias Ovarianas , Saponinas , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Camundongos Nus , Camundongos , Angiogênese
2.
Phytomedicine ; 128: 155431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537440

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Assuntos
Abietanos , Carcinoma Pulmonar de Células não Pequenas , Estresse do Retículo Endoplasmático , Neoplasias Pulmonares , Fatores de Transcrição NFATC , Abietanos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Proto-Oncogene Mas , Antígeno B7-H1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor de Morte Celular Programada 1 , Imunoterapia/métodos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células A549 , Camundongos Nus , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-myc/metabolismo , Masculino , Feminino
3.
Transfusion ; 64(3): 428-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299710

RESUMO

BACKGROUND: Regulatory aspects of transfusion medicine add complexity in blinded transfusion trials when considering various electronic record keeping software and blood administration processes. The aim of this study is to explore strategies when blinding transfusion components and products in paper and electronic medical records. METHODS: Surveys were collected and interviews were conducted for 18 sites across various jurisdictions in North America to determine solutions applied in previous transfusion randomized control trials. RESULTS: Sixteen responses were collected of which 11 had previously participated in a transfusion randomized control trial. Various solutions were reported which were specific to the laboratory information system (LIS) and electronic medical record (EMR) combinations although solutions could be grouped into four categories which included the creation of a study product code in the LIS, preventing the transmission of data from the LIS to the EMR, utilizing specialized stickers and labels to conceal product containers and documents in the paper records, and modified bedside procedures and documentation. DISCUSSION: LIS and EMR combinations varied across sites, so it was not possible to determine combination-specific solutions. The study was able to highlight solutions that may be emphasized in future iterations of LIS and EMR software as well as procedural changes that may minimize the risk of unblinding.


Assuntos
Transfusão de Sangue , Registros Eletrônicos de Saúde , Humanos , Transfusão de Componentes Sanguíneos , América do Norte , Projetos de Pesquisa , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
J Genet Genomics ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38218395

RESUMO

The human gut microbiome, a complex ecosystem, significantly influences host health, impacting crucial aspects such as metabolism and immunity. To deepen our comprehension and control of the molecular mechanisms orchestrating the intricate interplay between gut commensal bacteria and human health, the exploration of genome engineering for gut microbes is a promising frontier. Nevertheless, the complexities and diversities inherent in the gut microbiome pose substantial challenges to the development of effective genome engineering tools for human gut microbes. In this comprehensive review, we provide an overview of the current progress and challenges in genome engineering of human gut commensal bacteria, whether executed in vitro or in situ. A specific focus is directed towards the advancements and prospects in cargo DNA delivery and high-throughput techniques. Additionally, we elucidate the immense potential of genome engineering methods to deepen our understanding of the human gut microbiome and engineer the microorganisms to enhance human health.

5.
Pharmacol Res ; 200: 107070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218353

RESUMO

Fibrotic hypersensitivity pneumonitis (FHP) is a fatal interstitial pulmonary disease with limited treatment options. Lung macrophages are a heterogeneous cell population that exhibit distinct subsets with divergent functions, playing pivotal roles in the progression of pulmonary fibrosis. However, the specific macrophage subpopulations and underlying mechanisms involved in the disease remain largely unexplored. In this study, a decision tree model showed that matrix metalloproteinase-14 (MMP14) had higher scores for important features in the up-regulated genes in macrophages from mice exposed to the Saccharopolyspora rectivirgula antigen (SR-Ag). Using single-cell RNA sequencing (scRNA-seq) analysis of hypersensitivity pneumonitis (HP) mice profiles, we identified MMP14high macrophage subcluster with a predominant M2 phenotype that exhibited higher activity in promoting fibroblast-to myofibroblast transition (FMT). We demonstrated that suppressing toll-like receptor 2 (TLR2) and nuclear factor kappa-B (NF-κB) could attenuate MMP14 expression and exosome secretion in macrophages stimulation with SR-Ag. The exosomes derived from MMP14-overexpressing macrophages were found to be more effective in regulating the transition of fibroblasts through exosomal MMP14. Importantly, it was observed that the transfer of MMP14-overexpressing macrophages into mice promoted lung inflammation and fibrosis induced by SR-Ag. NSC-405020 binding to the hemopexin domain (PEX) of MMP-14 ameliorated lung inflammation and fibrosis induced by SR-Ag in mice. Thus, MMP14-overexpressing macrophages may be an important mechanism contributing to the exacerbation of allergic reactions. Our results indicated that MMP14 in macrophages has the potential to be a therapeutic target for HP.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Alveolite Alérgica Extrínseca/metabolismo , Alveolite Alérgica Extrínseca/patologia , Macrófagos/metabolismo , Pneumonia/metabolismo , Camundongos Endogâmicos C57BL
6.
Pharmacol Res ; 199: 107034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070793

RESUMO

The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.


Assuntos
Produtos Biológicos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
7.
Immunol Rev ; 321(1): 128-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553793

RESUMO

Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Morte Celular , Imunoterapia
8.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003270

RESUMO

Cancer poses a significant global public health challenge [...].


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Cytokine Growth Factor Rev ; 73: 173-184, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634980

RESUMO

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles secreted from almost all types of cells including bacteria, mammals and plants, and are presumed to be mediators of intercellular communication. Bacterial extracellular vesicles (BEVs) are nanoparticles with diverse diameters, ranging from 20 to 400 nm. BEVs are composed of soluble microbial metabolites, including nucleic acid, proteins, lipoglycans, and short-chain fatty acids (SCFAs). In addition, EVs may contain quorum sensing peptides that are endowed with the ability to protect bacteria against bacteriophages, form and maintain bacterial communities, and modulate the host immune system. BEVs are potentially promising therapeutic modalities for use in vaccine development, cancer immunotherapy regimens, and drug delivery cargos. Plant-derived EVs (PEVs), such as EVs derived from herbal medicines, can be absorbed by the gut microbiota and influence the composition and homeostasis of gut microbiota. This review highlights the roles of BEVs and PEVs in bacterial and plant physiology and discusses crosstalk among gut bacteria, host metabolism and herbal medicine. In summary, EVs represent crucial communication messengers in the gut microbiota, with potential therapeutic value in the delivery of herbal medicines.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Humanos , Animais , Comunicação Celular , Homeostase , Extratos Vegetais , Mamíferos
11.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607911

RESUMO

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Citocinas , Subfamília D de Receptores Semelhantes a Lectina de Células NK
12.
Technol Cancer Res Treat ; 22: 15330338231187239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424497

RESUMO

Objectives: Despite the development of various cancer treatment methods, chemotherapy remains the most common approach for treating cancer. The risk of tumors acquiring resistance to chemotherapy remains a significant hurdle to the successful treatment of various types of cancer. Therefore, overcoming or predicting multidrug resistance in clinical treatment is essential. The detection of circulating tumor cells (CTCs) is an important component of liquid biopsy and the diagnosis of cancer. This study aims to test the feasibility of single-cell bioanalyzer (SCB) and microfluidic chip technology in identifying patients with cancer resistant to chemotherapy and propose new methods to provide clinicians with new choices. Methods: In this study, we used rapidly isolated viable CTCs from the patient blood samples method combined with SCB technology and a novel microfluidic chip, to predict whether patients with cancer are resistant to chemotherapy. SCB and microfluidic chip were used to select single CTCs, and the accumulation of chemotherapy drug was fluorescently measured in real time on these cells in the absence and presence of permeability-glycoprotein inhibitors. Results: Initially, we successfully isolated viable CTCs from the blood samples of patients. Additionally, the present study accurately predicted the response of 4 lung cancer patients to chemotherapeutic drugs. In addition, the CTCs of 17 patients with breast cancer diagnosed at Zhuhai Hospital of Traditional Chinese and Western Medicine were assessed. The results indicated that 9 patients were sensitive to chemotherapeutic drugs, 8 patients were resistant to a certain degree, and only 1 was completely resistant to chemotherapy. Conclusion: The present study indicated that the SCB technology could be used as a prognostic assay to evaluate the CTCs response to available drugs and guide physicians to treatment options that are most likely to be effective.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Linhagem Celular Tumoral , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Microfluídica/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico
13.
Methods Mol Biol ; 2689: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37430042

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer death in the world. Despite the development of various lung cancer treatment methods, including surgery, radiation therapy, endocrine therapy, immunotherapy, and gene therapy, chemotherapy remains the most common approach for treating cancer. The risk of tumors acquiring resistance to chemotherapy remains a significant hurdle to the use of this approach for the successful treatment of various types of cancer. The majority of cancer-related deaths are related to metastasis. Circulating tumor cells (CTCs) are cells that have been detached from the primary tumor or have metastasized and entered the circulation. CTCs can cause metastases in various organs by reaching them through the bloodstream. The CTCs exist in peripheral blood as single cells or as oligoclonal clusters of tumor cells along with platelets and lymphocytes. The detection of CTCs is an important component of liquid biopsy which aids in the diagnosis, treatment, and prognosis of cancer. Here, we describe a method for extracting CTCs from the tumor of patients and using the microfluidic single-cell technique to study the inhibition of multidrug resistance due to drug efflux on a single cancer cell, to propose novel methods that can provide clinicians with more appropriate choices in their diagnostic and treatment approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Plaquetas , Terapia Genética , Resistência a Múltiplos Medicamentos
14.
Pharmacol Res ; 194: 106850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453674

RESUMO

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linfócitos T CD8-Positivos , Imunomodulação , Neoplasias Pulmonares/patologia
16.
Phytomedicine ; 114: 154751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004400

RESUMO

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Assuntos
Antineoplásicos , Artrite Reumatoide , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Antineoplásicos/uso terapêutico
17.
Paediatr Child Health ; 28(1): 30-36, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865758

RESUMO

Background: Transfusion is discouraged in hemodynamically stable children with severe iron deficiency anemia (IDA). Intravenous (IV) iron sucrose (IS) could be an alternative for some patients; however, there is a paucity of data on its use in the paediatric emergency department (ED). Methods: We analyzed patients presenting with severe IDA at the Children's Hospital of Eastern Ontario (CHEO) ED between September 1, 2017, and June 1, 2021. We defined severe IDA as microcytic anemia <70 g/L and either a ferritin <12 ng/mL or a documented clinical diagnosis. Results: Of 57 patients, 34 (59%) presented with nutritional IDA and 16 (28%) presented with IDA secondary to menstrual bleeding. Fifty-five (95%) patients received oral iron. Thirteen (23%) patients additionally received IS and after 2 weeks, the average Hgb was similar to transfused patients. The median time for patients receiving IS without PRBC transfusion to increase their Hgb by at least 20 g/L was 7 days (95%CI 0.7 to 10.5 days). Of 16 (28%) children who were transfused with PRBC, there were three mild reactions, and one patient who developed transfusion associated circulatory overload (TACO). There were two mild and no severe reactions to IV iron. There were no return visits to the ED due to anemia in the following 30 days. Conclusions: Management of severe IDA with IS was associated with a rapid rise in Hgb without severe reactions or returns to ED. This study highlights a strategy for management of severe IDA in hemodynamically stable children that spares them the risks associated with PRBC transfusion. Paediatric specific guidelines and prospective studies are needed to guide the use of IV iron in this population.

18.
Acta Pharm Sin B ; 13(3): 1164-1179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970196

RESUMO

Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.

19.
Biomed Pharmacother ; 162: 114610, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989718

RESUMO

BACKGROUND: Ginseng polysaccharide (GP) is one of the most abundant components in Panax ginseng. However, the absorption pathways and mechanisms of GPs have not been investigated systematically due to the challenges of their detection. METHODS: The fluorescein isothiocyanate derivative (FITC) was employed to label GP and ginseng acidic polysaccharide (GAP) to obtain target samples. HPLC-MS/MS assay was used to determine the pharmacokinetics of GP and GAP in rats. The Caco-2 cell model was used to investigate the uptake and transport mechanisms of GP and GAP in rats. RESULTS: Our results demonstrated that the absorption of GAP was more than that of GP in rats after gavage administration, while there was no significant difference between both after intravenous administration. In addition, we found that GAP and GP were more distributed in the kidney, liver and genitalia, suggesting that GAP and GP are highly targeted to the liver, kidney and genitalia. Importantly, we explored the uptake mechanism of GAP and GP. GAP and GP are endocytosed into the cell via lattice proteins or niche proteins. Both are transported lysosomally mediated to the endoplasmic reticulum (ER) and then enter the nucleus through the ER, thus completing the process of intracellular uptake and transportation. CONCLUSION: Our results confirm that the uptake of GPs by small intestinal epithelial cells is primarily mediated via lattice proteins and the cytosolic cellar. The discovery of important pharmacokinetic properties and the uncovering of the absorption mechanism provide a research rationale for the research of GP formulation and clinical promotion.


Assuntos
Panax , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Polissacarídeos
20.
Pharmacol Res ; 191: 106739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948327

RESUMO

Nearly half of all Asian non-small cell lung cancer (NSCLC) patients harbour epidermal growth factor receptor (EGFR) mutations, and first-generation EGFR tyrosine kinase inhibitors (TKIs) are one of the first-line treatments that have improved the outcomes of these patients. Unfortunately, 20% of these patients can not benefit from the treatment. The basis of this primary resistance is poorly understood. Therefore, overcoming EGFR-TKI primary resistance and maintaining the efficacy of TKIs has become a key issue. ß-Elemene, a sesquiterpene compound extracted from Curcuma aromatica Salisb. (wenyujing), has shown potent antitumor effects. In this research, we found that ß-elemene combined with erlotinib enhanced the cytotoxicity of erlotinib to primary EGFR-TKI-resistant NSCLC cells with EGFR mutations and that ferroptosis was involved in the antitumor effect of the combination treatment. We found that lncRNA H19 was significantly downregulated in primary EGFR-TKI-resistant NSCLC cell lines and was upregulated by the combination treatment. Overexpression or knockdown of H19 conferred sensitivity or resistance to erlotinib, respectively, in both in vitro and in vivo studies. The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that ß-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , RNA Longo não Codificante , Sesquiterpenos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , RNA Longo não Codificante/genética , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...