Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474465

RESUMO

The pharmacological activity and medicinal significance of Amauroderma rugosum (AR) have rarely been documented. We examined the antioxidant and neuroprotective effects of AR on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in an SH-SY5Y human neuroblastoma cell model of Parkinson's disease (PD) and explored the active ingredients responsible for these effects. The results showed that the AR aqueous extract could scavenge reactive oxygen species and reduce SH-SY5Y cell death induced by 6-OHDA. In addition, the AR aqueous extract increased the survival of Caenorhabditis elegans upon juglone-induced toxicity. Among the constituents of AR, only polysaccharides and gallic acid exhibited antioxidant and neuroprotective effects. The AR aqueous extract reduced apoptosis and increased the expression of phospho-Akt, phospho-mTOR, phospho-MEK, phospho-ERK, and superoxide dismutase-1 in 6-OHDA-treated SH-SY5Y cells. The polysaccharide-rich AR extract was slightly more potent than the aqueous AR extract; however, it did not affect the expression of phospho-Akt or phospho-mTOR. In conclusion, the AR aqueous extract possessed antioxidant and neuroprotective properties against 6-OHDA-induced toxicity in SH-SY5Y cells. The mechanism of action involves the upregulation of the Akt/mTOR and MEK/ERK-dependent pathways. These findings indicate the potential utility of AR and its active ingredients in preventing or treating neurodegenerative disorders associated with oxidative stress such as PD.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Polyporaceae , Humanos , Oxidopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Quinases TOR , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Biomed Pharmacother ; 172: 116269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367549

RESUMO

AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 µM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.


Assuntos
Neoplasias da Mama , Diterpenos , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Meios de Cultivo Condicionados , Diterpenos/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
3.
Inflammopharmacology ; 32(1): 393-404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37429999

RESUMO

Medulla Tetrapanacis (MT) is a commonly used herb to promote lactation and manage mastitis in lactating mothers. However, its anti-inflammatory and anti-bacterial effects are currently unknown. We hypothesized that MT water extract possesses anti-inflammatory and anti-bacterial effects by modulating macrophage polarization to reduce the release of inflammatory mediators and phagocytosis via inactivation of MAPKs pathways. The chemical composition of the MT water extract was analyzed by UPLC-Orbitrap-mass spectrometry. The anti-inflammatory and anti-bacterial properties of the MT water extract were examined using LPS-stimulated inflammation and Staphylococcus aureus infection model in RAW 264.7 cells, respectively. The underlying mechanism of action of the MT water extract was also investigated. We identified eight compounds by UPLC-Orbitrap-mass spectrometry that are abundant within the MT water extract. MT water extract significantly suppressed LPS-induced nitric oxide, TNF-α and IL-6 secretion in RAW 264.7 cells which was accompanied by the promotion of macrophage polarization from pro-inflammatory towards anti-inflammatory phenotypes. MT water extract significantly suppressed the LPS-induced MAPK activation. Finally, MT water extract decreased the phagocytic capacity of the RAW 264.7 cells against S. aureus infection. MT water extract could suppress LPS-induced inflammation by promoting macrophages towards an anti-inflammatory phenotype. In addition, MT also inhibited the growth of S. aureus.


Assuntos
Lactação , Lipopolissacarídeos , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Staphylococcus aureus , Transdução de Sinais , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia
4.
Foods ; 12(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959074

RESUMO

Nam Wah banana (Musa paradisiaca L.) is the most common banana cultivar in Thailand. Large amounts of its non-consumable byproducts are considered undervalued and thrown as waste. Exploring the potential utilization and application of banana byproducts for human benefit can add to their value and minimize the risk of threats. This study aimed to investigate phytochemicals, antioxidant and anti-inflammatory activities, and toxicity of Nam Wah banana byproducts. Five banana plant parts, including the midrib, leaf, peduncle, unripe and ripe peels, were extracted using hexane, ethyl acetate, ethanol, and water. Among the extracts tested, the ethyl acetate leaf extract showed the strongest antioxidant capacity and anti-inflammatory activity, probably through the inhibition of inducible nitric oxide synthase (iNOS) and 15-lipoxygenase (15-LOX). Positive correlations existed between the activities and the total phenolic/flavonoid content of banana byproducts. An in silico docking analysis demonstrated that flavonoid glycosides in banana byproducts, such as kaempferol-3-O-rutinoside and rutin, may bind to inducible iNOS, whereas omega-3-polyunsaturated fatty acids, such as eicosapentaenoic acid, may bind to 15-LOX and cyclooxygenase-2 (COX-2). The extracts showed either low or no toxicity. These findings suggest that banana byproducts are a natural source of antioxidant and anti-inflammatory compounds. It is recommended that additional investigations be conducted to explore their potential therapeutic applications in treating disorders linked with oxidative stress or inflammation. This research has the potential to enhance the value of banana byproducts.

5.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762235

RESUMO

COVID-19 pandemic, caused by the SARS-CoV-2 virus, is still affecting the entire world via the rapid emergence of new contagious variants. Vaccination remains the most effective prevention strategy for viral infection, yet not all countries have sufficient access to vaccines due to limitations in manufacturing and transportation. Thus, there is an urgent need to develop an easy-to-use, safe, and low-cost vaccination approach. Genetically modified microorganisms, especially probiotics, are now commonly recognized as attractive vehicles for delivering bioactive molecules via oral and mucosal routes. In this study, Lactobacillus casei has been selected as the oral vaccine candidate based on its' natural immunoadjuvant properties and the ability to resist acidic gastric environment, to express antigens of SARS-CoV-2 Omicron variant B.1.1.529 with B-cell and T-cell epitopes. This newly developed vaccine, OMGVac, was shown to elicit a robust IgG systemic immune response against the spike protein of Omicron variant B.1.1.529 in Golden Syrian hamsters. No adverse effects were found throughout this study, and the overall safety was evaluated in terms of physiological and histopathological examinations of different organs harvested. In addition, this study illustrated the use of the recombinant probiotic as a live delivery vector in the initiation of systemic immunity, which shed light on the future development of next-generation vaccines to combat emerging infectious diseases.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , Mesocricetus
6.
Nutrients ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764767

RESUMO

Aquilaria crassna (AC) is a beneficial plant widely used to alleviate various health ailments. Nevertheless, the neuroprotection, antiaging, and xenobiotic detoxification against high benzo[a]pyrene induction have not been investigated. This study aimed to investigate the effects of ethanolic extract of AC leaves (ACEE) in vitro using SH-SY5Y cells and in vivo using Caenorhabditis elegans (C. elegans). Neuroprotective activities and cell cycle progression were studied using SH-SY5Y cells. Additionally, C. elegans was used to determine longevity, health span, and transcriptional analysis. Furthermore, ACEE possible active compounds were analyzed by gas chromatograph-mass spectrometry (GC-MS) analysis and the possible active compounds were evaluated using a molecular docking study. First, ACEE possessed neuroprotective effects by normalizing cell cycle progression via the regulation of AhR/CYP1A1/cyclin D1 pathway. Next, ACEE played a role in xenobiotic detoxification in high B[a]P-induced C. elegans by the amelioration of lifespan reduction, and body length and size decrease through the reduction in gene expression in hexokinase (hxk) and CYP35 pathway. Finally, phytochemicals of ACEE were identified and we uncovered that clionasterol was the possible active constituent in powerfully inhibiting both CYP1A1 and hexokinase II receptor. Essentially, ACEE was recognized as a potential alternative medicine to defend against high B[a]P effects on neurotoxicity and xenobiotic detoxification.

7.
ACS Appl Mater Interfaces ; 15(35): 41337-41350, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615350

RESUMO

Despite the acknowledged advantages of combined immunochemotherapy for tumor treatment, the high efficiency of co-delivery of these combined agents into the targeted tumor tissue is still challenging. Herein, based on a "three-birds-with-one-stone" strategy, a facile glycyrrhizic acid (GL)-lipid hybrid nanoplatform loading triptolide (TP/GLLNP) is designed to better address the dilemma. Differing from the traditional liposomes with dual-drug co-delivery NPs, GL with a cholesterol-like structure is primarily employed to construct the lipid membrane skeleton of the GL-based lipid nanoparticle (GLLNP), and then triptolide (TP) is readily loaded in the lipid bilayer of GLLNP. The fabricated GLLNP possessed similar drug loading efficacy, particle size, and storage stability; none of the hemolysis; even higher membrane fluidity; and lower absorbed opsonin proteins compared with the conventional liposomes. Compared to TP-loaded traditional liposomes (TP/Lipo), TP/GLLNP exhibits significantly enhanced cellular uptake, cytotoxicity, and apoptosis of HepG2 cells. In addition, GLLNP could ameliorate tumor immunosuppression by promoting tumor-associated macrophage polarization from M2 to M1 phenotype. Furthermore, enhanced retention and accumulation in the tumor area of GLLNP could be found. As expected, TP/GLLNP displayed synergistic anti-hepatocellular carcinoma efficacy in vivo. In conclusion, this study provides an inspirational strategy to combine the anti-HCC benefits of GL and TP using a novel dual-drug co-delivery nanosystem.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Lipossomos , Ácido Glicirrízico , Lipídeos
8.
Animals (Basel) ; 13(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570288

RESUMO

With a close pathogenetic resemblance to human diabetes, canine Diabetes Mellitus, a chronic metabolic disease featuring abnormally high blood sugar levels, is increasing in prevalence worldwide. Unlike humans, canine glycemic control requires life-long insulin injections and dietary control in most cases, thereby jeopardizing diabetic dogs' quality of life and increasing the difficulty of disease control. While many research studies have focused on elucidating the relationship between the canine gut microbiome and diseases, there is currently no research on the subject of diabetes mellitus in dogs. We hypothesized that the gut microbiome of canines with diabetes mellitus is different from that of healthy controls. Thus, we performed targeted 16S rRNA sequencing and comprehensive bioinformatic analysis to compare the gut microbiome profiles of 16 diabetic dogs with those of 32 healthy dogs. Clostridioides difficile, Phocaeicola plebeius, Lacrimispora indolis, and Butyricicoccus pullicaecorum were found to be enriched in diabetic dogs. A distinct shift towards carbohydrate degradation metabolic pathways was found to be differentially abundant in the diabetic subjects. Alteration of the co-occurrence network was also evident in the diabetic group. In conclusion, our study suggests that the gut microbial landscape differs in diabetic canines at the genera, species, functional, and network levels. These findings have significant implications for disease management, and thus warrant further research.

9.
Foods ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444267

RESUMO

Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.

10.
Phytother Res ; 37(10): 4442-4456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259475

RESUMO

Cancer metastasis remains the most common cause of death in breast cancer patients. Tumor-associated macrophages (TAMs) are a novel therapeutic target for the treatment of metastatic breast cancer. Despite the good anti-cancer activity of garcinone E (GE), there are no reports on its therapeutic effects on breast cancer metastasis. The objective of this study was to examine the anti-cancer effects of GE on metastatic breast cancer. RAW 264.7 and THP-1 cells were polarized to M2 macrophages by IL-4/IL-13 in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were used to explore the effect of GE on breast cancer growth and metastasis in vivo. In vitro studies showed that GE dose-dependently suppressed IL-4 + IL-13-induced expression of CD206 in both RAW 264.7 cells and differentiated THP-1 macrophages. However, GE did not affect the LPS + IFN-γ-induced polarization to the M1-like macrophages in vitro. GE inhibited the expression of the M2 macrophage specific genes in RAW 264.7 cells, and simultaneously impaired M2 macrophage-induced breast cancer cell proliferation and migration, and angiogenesis. In animal studies, GE significantly suppressed tumor growth, angiogenesis, and lung metastasis in 4T1 tumor-bearing mice, without causing toxicity. In both tumor and lung tissues, the proportion of M2-like TAMs was significantly decreased while the proportion of M1-like TAMs was markedly increased by GE treatment. Mechanistically, GE inhibited phosphorylation of STAT6 in vitro and in vivo. Our results demonstrate for the first time that GE suppresses breast cancer growth and pulmonary metastasis by modulating M2-like macrophage polarization through the STAT6 signaling pathway.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor , Linhagem Celular Tumoral , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-13/uso terapêutico , Transdução de Sinais , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
11.
Biomed Pharmacother ; 164: 114935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245337

RESUMO

Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.


Assuntos
Antiasmáticos , Asma , Houttuynia , Humanos , Sinalização do Cálcio , Houttuynia/metabolismo , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Brônquios/metabolismo , Asma/tratamento farmacológico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo
12.
Phytomedicine ; 114: 154757, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011418

RESUMO

BACKGROUND: Breast cancer metastasis is leading cause of cancer death among women worldwide. Tumor-associated macrophages (TAMs) have been considered as potential targets for treating breast cancer metastasis because they promote tumor growth and development. Glycyrrhetinic acid (GA) is one of the most important phytochemicals of licorice which has shown promising anti-cancer efficacies in pre-clinical trials. However, the regulatory effect of GA on the polarization of TAMs remains elusive. PURPOSE: To investigate the role of GA in regulating the polarization of M2 macrophages and inhibiting breast cancer metastasis, and to further explore its underlying mechanisms of action. STUDY DESIGN: IL-4 / IL-13-treated RAW 264.7 and THP-1 cells were used as the M2-polarized macrophages in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were applied to study the effect of GA on breast cancer growth and metastasis in vivo. RESULTS: In vitro studies showed that GA significantly inhibited IL-4 / IL 13-induced M2-like polarization in RAW 264.7 and THP-1 macrophages without affecting M1-like polarization. GA strongly decreased the expression of M2 macrophage markers CD206 and Arg-1, and reduced the levels of the pro-angiogenic molecules VEGF, MMP9, MMP2 and IL-10 in M2 macrophages. GA also increased the phosphorylation of JNK1/2 in M2 macrophages. Moreover, GA significantly suppressed M2 macrophage-induced cell proliferation and migration in 4T1 cancer cells and HUVECs. Interestingly, the inhibitory effects of GA on M2 macrophages were abolished by a JNK inhibitor. Animal studies showed that GA significantly suppressed tumor growth, angiogenesis, and lung metastasis in BALB/c mice bearing breast tumor. In tumor tissues, GA reduced the number of M2 macrophages but elevated the proportion of M1 macrophages, accompanied by activation of JNK signaling. Similar results were found in the tail vein breast cancer metastasis model. CONCLUSION: This study demonstrated for the first time that GA could effectively suppress breast cancer growth and metastasis by inhibiting macrophage M2 polarization via activating JNK1/2 signaling. These findings indicate that GA could be served as the lead compound for the future development of anti-breast cancer drug.


Assuntos
Interleucina-4 , Neoplasias Pulmonares , Feminino , Animais , Camundongos , Humanos , Interleucina-4/metabolismo , Macrófagos , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Células THP-1 , Interleucina-13/metabolismo , Linhagem Celular Tumoral , Melanoma Maligno Cutâneo
13.
Biomed Pharmacother ; 162: 114617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001180

RESUMO

Despite various therapeutic approaches, colorectal cancer is among the most fatal diseases globally. Hence, developing novel and more effective methods for colorectal cancer treatment is essential. Recently, reactive oxygen species (ROS)/JNK signaling pathway has been proposed as the potential target for the anticancer drug discovery. The present study investigated the anticancer effects of the bioactive xanthone garcinone E (GAR E) in mangosteen and explored its underlying mechanism of action. HT-29 and Caco-2 cancer cells were used as in vitro models to study the anticancer effect of GAR E. The findings demonstrated that GAR E inhibited colony formation and wound healing, whereas triggered the production of ROS, which induced mitochondrial dysfunction and apoptosis, causing cell cycle arrest at the Sub G1 phase. Additionally, GAR E treatment elevated the ratio of Bax/Bcl-2 and activated PARP, caspases 3 and 9, and JNK1/2. These GAR E-induced cytotoxic activities and expression of signaling proteins were reversed by the antioxidant N-acetyl-L-cysteine and JNK inhibitor SP600125, indicating the involvement of ROS/JNK signaling pathways. In vivo experiments using an HT-29 xenograft nude mouse model also demonstrated the antitumor effect of GAR E. In conclusion, our findings showed that GAR E might be potentially effective in treating colorectal cancer and provided insights into the development of xanthones as novel chemotherapeutic agents.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias Colorretais/patologia
14.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235070

RESUMO

Keratinocytes form the physical barrier of the skin and play an important role in the inflammatory process. Amauroderma rugosum is an edible mushroom; however, its pharmacological properties have seldom been studied. Although the anti-inflammatory effect of the organic solvent extract of Amauroderma rugosum has been previously reported, it is not known whether the aqueous extract has a similar effect. In addition, the effect of Amauorderma rugosum extract on skin has never been explored. Therefore, the objectives of the present study were to evaluate the anti-inflammatory effects of the aqueous extract of Amauroderma rugosum on HaCaT keratinocytes, to explore its mechanisms of action, and to study the possible active ingredients involved. The results showed that the aqueous extract of Amauroderm rugosum at a concentration of 1.5 mg/mL was non-toxic to HaCaT cells and inhibited the release of cytokine interleukin-1ß, and chemokines interleukin-8 and monocyte chemoattractant protein-1 in tumor necrosis factor (TNF)-α- and interferon (IFN)-γ-stimulated HaCaT cells. Amauroderma rugosum extract reduced the intracellular levels of reactive oxygen species. In addition, Amauroderma rugosum extract reduced the total protein expression of nuclear factor-kappa B (NF-κB) and B-cells inhibitor alpha in HaCaT keratinocytes and inhibited the phosphorylation of mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (Akt), and mammalian target of rapamycin (mTOR) in TNF-α- and INF-γ-stimulated HaCaT keratinocytes. Chemical analysis revealed that the aqueous extract of Amauroderma rugosum contains polysaccharides, triterpenes, and phenolic compounds. Anti-inflammatory compounds, such as gallic acid, guanosine, and uridine, were also present. The anti-inflammatory effect of Amauroderma rugosum could be mimicked by a combination of gallic acid, guanosine, and uridine. In conclusion, our study suggests that the aqueous extract of Amauroderma rugosum exerts anti-inflammatory effects on keratinocytes through its antioxidant and inhibitory effects on MEK/ERK-, Akt/mTOR-, and NF-κB-dependent signaling pathways.


Assuntos
Triterpenos , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Gálico/farmacologia , Guanosina/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Queratinócitos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Polyporaceae , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solventes/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Uridina/farmacologia
15.
Phytomedicine ; 106: 154407, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070662

RESUMO

BACKGROUND: As one of the most classic antineoplastic agents, doxorubicin (Dox) is extensively used to treat a wide range of cancers. Nevertheless, the clinical outcomes of Dox-based therapies are severely hampered due to the significant cardiotoxicity. Glycyrrhetinic acid (GA) is the major biologically active compound of licorice, one of the most well-known food additives and medicinal plants in the world. We previously demonstrated that GA has the potential capability to protect mice from Dox-induced cardiac injuries. However, the underlying cardioprotective mechanism remains unexplored. PURPOSE: To investigate the cardioprotective benefits of GA against Dox-induced cardiotoxicity and to elucidate its mechanisms of action. STUDY DESIGN/METHODS: H9c2 cardiomyoblasts and AC16 cardiomyocytes were used as the cell models in vitro. A transgenic zebrafish model and a 4T1 mouse breast cancer model were applied to explore the cardioprotective effects of GA in vivo. RESULTS: In vitro, GA inhibited Dox-induced cell death and LDH release in H9c2 and AC16 cells without affecting the anti-cancer effects of Dox. GA significantly alleviated Dox-induced ROS generation, mitochondrial dysfunction, and apoptosis in H9c2 cells. Moreover, GA abolished the expression of pro-apoptotic proteins and restored Nrf2/HO-1 signaling pathway in Dox-treated H9c2 cells. On the contrary, Nrf2 knockdown strongly abrogated the cardioprotective effects of GA on Dox-treated H9c2 cells. In vivo, GA attenuated Dox-induced cardiac dysfunction by restoring stroke volume, cardiac output, and fractional shortening in the transgenic zebrafish embryos. In a 4T1 mouse breast cancer model, GA dramatically prevented body weight loss, attenuated cardiac dysfunction, and prolonged survival rate in Dox-treated mice, without compromising Dox's anti-tumor efficacy. Consistently, GA attenuated oxidative injury, reduced cardiomyocytes apoptosis, and restored the expressions of Nrf2 and HO-1 in Dox-treated mouse hearts. CONCLUSION: GA protects against Dox-induced cardiotoxicity by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis via upregulating Nrf2/HO-1 signaling pathway. These findings could provide solid evidence to support the further development of GA as a feasible and safe adjuvant to Dox chemotherapy for overcoming Dox-induced cardiotoxicity.


Assuntos
Antineoplásicos , Cardiotoxicidade , Ácido Glicirretínico , Animais , Camundongos , Antineoplásicos/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Aditivos Alimentares/metabolismo , Aditivos Alimentares/farmacologia , Aditivos Alimentares/uso terapêutico , Ácido Glicirretínico/farmacologia , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
16.
Mol Biol Rep ; 49(11): 11201-11208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107375

RESUMO

BACKGROUND: Nucleoside transporters are crucial in regulating the functions of adenosine. This study investigated the contribution of equilibrative nucleoside transporter (ENT) type 4 to adenosine transport in cardiomyocytes under simulated ischemic conditions and whether the inhibition of ENT4 could protect cardiomyocytes against ischemia-reperfusion injury. METHODS: AC16 human cardiomyocytes were used to create a model to simulate ischemia/reperfusion injury. ENT4 activity was inhibited by decynium-22 or specific siRNA against ENT4. The protein expressions of nucleoside transporters were measured by western blot analysis. The transport activity was studied by [3?H]adenosine uptake. The cell injury was studied by biochemical assays. RESULTS: The [3?H]adenosine uptake in AC16 cells was predominantly mediated by ENTs. ENT1 to ENT4 were present in AC16 cells and their protein expression levels were comparable in normal and ischemic conditions. Decynium-22 or siRNA against ENT4 did not affect the adenosine uptake in AC16 cells under normal conditions but could inhibit the adenosine uptake in AC16 cells by 28% under ischemic conditions. In addition, the cell viability and lactate dehydrogenase release of AC16 cells under ischemia conditions could be reduced by decynium-22 or siRNA against ENT4. CONCLUSION: The cell culture model has suggested that ENT4 may play a role in adenosine transport in cardiomyocytes under ischemic conditions. Inhibition or downregulation of ENT4 may be a potential approach for cardioprotection but this notion should be further validated using animal model.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Animais , Humanos , Miócitos Cardíacos/metabolismo , Adenosina/metabolismo , Nucleosídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia
17.
Front Pharmacol ; 13: 981152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147350

RESUMO

Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases (CVDs) are usually big burdens for elderly, caregivers and the health system. During the aging process, normal functions of vascular cells and tissue progressively lost and eventually develop vascular diseases. Endothelial dysfunction, reduced bioavailability of endothelium-derived nitric oxide are usual phenomena observed in patients with cardiovascular diseases. Myriad of studies have been done to investigate to delay the vascular dysfunction or improve the vascular function to prolong the aging process. Tumor suppressor gene p53, also a transcription factor, act as a gatekeeper to regulate a number of genes to maintain normal cell function including but not limited to cell proliferation, cell apoptosis. p53 also crosstalk with other key transcription factors like hypoxia-inducible factor 1 alpha that contribute to the progression of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn scientists' attention on its effects in vascular function. Though the role of tumor suppressor gene p53 is still not clear in vascular function, it is found to play regulatory roles and may involve in vascular remodeling, atherosclerosis or pulmonary hypertension. p53 may have a divergent role in endothelial and vascular muscle cells in those conditions. In this review, we describe the different effects of p53 in cardiovascular physiology. Further studies on the effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque formation in common animal models are required before the therapeutic potential can be realized.

18.
Front Pharmacol ; 13: 928817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928282

RESUMO

Angiogenesis, the formation of new capillaries from pre-existing vascular networks, plays an important role in many physiological and pathological processes. The use of pro-angiogenic agents has been proposed as an attractive approach for promoting wound healing and treating vascular insufficiency-related problems, such as ischemic heart disease and stroke, which are the leading causes of death worldwide. Traditional herbal medicine has a long history; however, there is still a need for more in-depth studies and evidence-based confirmation from controlled and validated trials. Many in vitro and in vivo studies have reported that herbal medicines and their bioactive ingredients exert pro-angiogenic activity. The most frequently studied pro-angiogenic phytochemicals include ginsenosides from Panax notoginseng, astragalosides and calycosin from Radix Astragali, salvianolic acid B from Salvia miltiorrhiza, paeoniflorin from Radix Paeoniae, ilexsaponin A1 from Ilex pubescens, ferulic acid from Angelica sinensis, and puerarin from Radix puerariae. This review summarizes the progress in research on these phytochemicals, particularly those related to pro-angiogenic mechanisms and applications in ischemic diseases, tissue repair, and wound healing. In addition, an outline of their limitations and challenges during drug development is presented.

19.
Oxid Med Cell Longev ; 2022: 9266178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693699

RESUMO

Clinical outcomes for doxorubicin (Dox) are limited by its cardiotoxicity but a combination of Dox and agents with cardioprotective activities is an effective strategy to improve its therapeutic outcome. Natural products provide abundant resources to search for novel cardioprotective agents. Ganoderma lucidum (GL) is the most well-known edible mushroom within the Ganodermataceae family. It is commonly used in traditional Chinese medicine or as a healthcare product. Amauroderma rugosum (AR) is another genus of mushroom from the Ganodermataceae family, but its pharmacological activity and medicinal value have rarely been reported. In the present study, the cardioprotective effects of the AR water extract against Dox-induced cardiotoxicity were studied in vitro and in vivo. Results showed that both the AR and GL extracts could potentiate the anticancer effect of Dox. The AR extract significantly decreased the oxidative stress, mitochondrial dysfunction, and apoptosis seen in Dox-treated H9c2 rat cardiomyocytes. However, knockdown of Nrf2 by siRNA abolished the protective effects of AR in these cells. In addition, Dox upregulated the expression of proapoptotic proteins and downregulated the Akt/mTOR and Nrf2/HO-1 signaling pathways, and these effects could be reversed by the AR extract. Consistently, the AR extract significantly prolonged survival time, reversed weight loss, and reduced cardiac dysfunction in Dox-treated mice. In addition, oxidative stress and apoptosis were suppressed, while Nrf2 and HO-1 expressions were elevated in the heart tissues of Dox-treated mice after treatment with the AR extract. However, the GL extract had less cardioprotective effect against Dox in both the cell and animal models. In conclusion, the AR water extract demonstrated a remarkable cardioprotective effect against Dox-induced cardiotoxicity. One of the possible mechanisms for this effect was the upregulation of the mTOR/Akt and Nrf2/HO-1-dependent pathways, which may reduce oxidative stress, mitochondrial dysfunction, and cardiomyocyte apoptosis. These findings suggested that AR may be beneficial for the heart, especially in patients receiving Dox-based chemotherapy.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Ratos , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/genética , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polyporaceae , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
20.
Kaohsiung J Med Sci ; 38(6): 509-516, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35548873

RESUMO

Amauroderma rugosum (AR) is a basidiomycete in the Ganodermataceae family that has been used traditionally to prevent epileptic attacks and constant crying in babies. However, AR has not been widely studied scientifically. In this review, we summarize the phytochemical components and pharmacological properties of AR that have been reported in the literature. Chemical analyses have revealed that the components of AR include sterols, flavonoids, fatty acids and esters, aromatic acids and esters, phenols, polysaccharides, and triterpenes. Pharmacological properties of AR include antioxidant, anti-inflammatory, neuroprotective, anti-cancer, anti-hyperlipidemic, anti-epileptic, and antibacterial effects. These findings suggest that AR and its bioactive ingredients have potential therapeutic applications, particularly for age-related diseases.


Assuntos
Compostos Fitoquímicos , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Ésteres , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Polyporaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...