Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Pediatr Cardiol ; 45(5): 1023-1035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565666

RESUMO

Congenital long QT syndrome (LQTS) is an inherited arrhythmia syndrome associated with sudden cardiac death. Accurate interpretation and classification of genetic variants in LQTS patients are crucial for effective management. All patients with LQTS with a positive genetic test over the past 18 years (2002-2020) in our single tertiary pediatric cardiac center were identified. Reevaluation of the reported variants in LQTS genes was conducted using the American College of Genetics and Genomics (ACMG) guideline after refinement by the US ClinGen SVI working group and guideline by Walsh et al. on genetic variant reclassification, under multidisciplinary input. Among the 59 variants identified. 18 variants (30.5%) were reclassified. A significant larger portion of variants of unknown significance (VUS) were reclassified compared to likely pathogenic (LP)/pathogenic (P) variants (57.7% vs 9.1%, p < 0.001). The rate of reclassification was significantly higher in the limited/disputed evidence group compared to the definite/moderate evidence group (p = 0.0006). All LP/P variants were downgraded in the limited/disputed evidence group (p = 0.0057). VUS upgrades are associated with VUS located in genes within the definite/moderate evidence group (p = 0.0403) and with VUS present in patients exhibiting higher corrected QT intervals (QTc) (p = 0.0445). A significant number of pediatric LQTS variants were reclassified, particularly for VUS. The strength of the gene-disease association of the genes influences the reclassification performance. The study provides important insights and guidance for pediatricians to seek for reclassification of "outdated variants" in order to facilitate contemporary precision medicine.


Assuntos
Testes Genéticos , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/genética , Criança , Feminino , Masculino , Testes Genéticos/métodos , Variação Genética , Adolescente , Pré-Escolar , Lactente , Mutação , Estudos Retrospectivos
2.
Physiol Mol Biol Plants ; 28(4): 819-835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35592486

RESUMO

The present study was conducted to identify the novel QTLs controlling salinity and sodicity tolerance using indica MAGIC rice population. Phenotyping was carried out in salinity (EC ~ 10 dS/m) and sodicity (pH ~ 9.8) at the seedling stage. Among 391 lines, 43 and 98 lines were found tolerant and moderately tolerant to salinity. For sodicity condition, 2 and 45 lines were showed tolerance and moderately tolerance at seedling stage. MAGIC population was genotyped with the help of genotyping by sequencing (GBS) and filtered 27041SNPs were used for genome wide marker trait association studies. With respect to salinity tolerance, 25 SNPs were distributed on chromosomes 1, 5, 11 and 12, whereas 18 SNPs were mapped on chromosomes 6, 4 and 11 with LOD value of > 3.25 to sodicity tolerance in rice. The candidate gene analysis detected twelve causal genes including SKC1 gene at Saltol region for salinity and six associated genes for sodic stress tolerance. The significant haplotypes responsible for core histone protein coding gene (LOC_Os12g25120) and three uncharacterized protein coding genes (LOC_Os01g20710, LOC_Os01g20870 and LOC_Os12g22020) were identified under saline stress. Likewise, five significant haplotypes coding for ribose 5-phosphate isomerise (LOC_Os04g24140), aspartyl protease (LOC_Os06g15760), aluminum-activated malate transporter (LOC_Os06g15779), OsFBX421-Fbox domain containing protein (LOC_Os11g32940) and one uncharacterized protein (LOC_Os11g32930) were detected for sodic stress tolerance. The identified novel SNPs could be the potential candidates for functional characterization. These candidate genes aid to further understanding of genetic mechanism on salinity and sodicity stress tolerance in rice. The tolerant line could be used in future breeding programme to enhance the salinity and sodicity tolerance in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01174-8.

3.
New Phytol ; 233(6): 2520-2533, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015901

RESUMO

Rice black-streaked dwarf virus disease (RBSDVD) and southern rice black-streaked dwarf virus disease (SRBSDVD) are the most destructive viral diseases in rice. Progress is limited in breeding due to lack of resistance resource and inadequate knowledge on the underlying functional gene. Using genome-wide association study (GWAS), linkage disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, we identified a highly RBSDVD-resistant variety and its first functional gene. A highly RBSDVD-resistant variety W44 was identified through extensive evaluation of a diverse international rice panel. Seventeen quantitative trait loci (QTLs) were identified among which qRBSDV6-1 had the largest phenotypic effect. It was finely mapped to a 0.8-1.2 Mb region on chromosome 6, with 62 annotated genes. Analysis of the candidate genes underlying qRBSDV6-1 showed high expression of aspartic proteinase 47 (OsAP47) in a susceptible variety, W122, and a low resistance variety, W44. OsAP47 overexpressing lines exhibited significantly reduced resistance, while the knockout mutants exhibited significantly reduced SRBSDVD and RBSDVD severity. Furthermore, the resistant allele Hap1 of OsAP47 is almost exclusive to Indica, but rare in Japonica. Results suggest that OsAP47 knockout by editing is effective for improving RBSDVD and SRBSDVD resistance. This study provides genetic information for breeding resistant cultivars.


Assuntos
Ácido Aspártico Proteases , Oryza , Viroses , Estudo de Associação Genômica Ampla , Oryza/genética , Peptídeo Hidrolases , Melhoramento Vegetal , Doenças das Plantas/genética , Reoviridae
4.
Sci Rep ; 11(1): 21502, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728643

RESUMO

Biotic stresses, including diseases, severely affect rice production, compromising producers' ability to meet increasing global consumption. Understanding quantitative responses for resistance to diverse pathogens can guide development of reliable molecular markers, which, combined with advanced backcross populations, can accelerate the production of more resistant varieties. A candidate gene (CG) approach was used to accumulate different disease QTL from Moroberekan, a blast-resistant rice variety, into Vandana, a drought-tolerant variety. The advanced backcross progeny were evaluated for resistance to blast and tolerance to drought at five sites in India and the Philippines. Gene-based markers were designed to determine introgression of Moroberekan alleles for 11 CGs into the progeny. Six CGs, coding for chitinase, HSP90, oxalate oxidase, germin-like proteins, peroxidase and thaumatin-like protein, and 21 SSR markers were significantly associated with resistance to blast across screening sites. Multiple lines with different combinations, classes and numbers of CGs were associated with significant levels of race non-specific resistance to rice blast and sheath blight. Overall, the level of resistance effective in multiple locations was proportional to the number of CG alleles accumulated in advanced breeding lines. These disease resistant lines maintained tolerance to drought stress at the reproductive stage under blast disease pressure.


Assuntos
Adaptação Fisiológica , Resistência à Doença/genética , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/imunologia , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
6.
Sci Rep ; 11(1): 13489, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188147

RESUMO

The indica ecotypes, IR64, an elite drought-susceptible variety adapted to irrigated ecosystem, and Apo (IR55423-01 or NSIC RC9), a moderate drought-tolerant upland genotype together with their hybrid (IR64 × Apo) were exposed to non- and water-stress conditions. By sequencing (RNA-seq) these genotypes, we were able to map genes diverging in cis and/or trans factors. Under non-stress condition, cis dominantly explains (11.2%) regulatory differences, followed by trans (8.9%). Further analysis showed that water-limiting condition largely affects trans and cis + trans factors. On the molecular level, cis and/or trans regulatory divergence explains their genotypic differences and differential drought response. Between the two parental genotypes, Apo appears to exhibit more photosynthetic efficiency even under water-limiting condition and is ascribed to trans. Statistical analyses showed that regulatory divergence is significantly influenced by environmental conditions. Likewise, the mode of parental expression inheritance which drives heterosis (HET) is significantly affected by environmental conditions indicating the malleability of heterosis to external factors. Further analysis revealed that the HET class, dominance, was significantly enriched under water-stress condition. We also identified allelic imbalance switching in which several genes prefer IR64- (or Apo-) specific allele under non-stress condition but switched to Apo- (or IR64-) specific allele when exposed to water-stress condition.


Assuntos
Desequilíbrio Alélico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vigor Híbrido , Doenças das Plantas/genética , Proteínas de Plantas , Desidratação/genética , Desidratação/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
7.
Plant Biotechnol J ; 19(1): 51-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594636

RESUMO

Effective and durable disease resistance for bacterial blight (BB) of rice is a continuous challenge due to the evolution and adaptation of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), on cultivated rice varieties. Fundamental to this pathogens' virulence is transcription activator-like (TAL) effectors that activate transcription of host genes and contribute differently to pathogen virulence, fitness or both. Host plant resistance is predicted to be more durable if directed at strategic virulence factors that impact both pathogen virulence and fitness. We characterized Tal7b, a minor-effect virulence factor that contributes incrementally to pathogen virulence in rice, is a fitness factor to the pathogen and is widely present in geographically diverse strains of Xoo. To identify sources of resistance to this conserved effector, we used a highly virulent strain carrying a plasmid borne copy of Tal7b to screen an indica multi-parent advanced generation inter-cross (MAGIC) population. Of 18 QTL revealed by genome-wide association studies and interval mapping analysis, six were specific to Tal7b (qBB-tal7b). Overall, 150 predicted Tal7b gene targets overlapped with qBB-tal7b QTL. Of these, 21 showed polymorphisms in the predicted effector binding element (EBE) site and 23 lost the EBE sequence altogether. Inoculation and bioinformatics studies suggest that the Tal7b target in one of the Tal7b-specific QTL, qBB-tal7b-8, is a disease susceptibility gene and that the resistance mechanism for this locus may be through loss of susceptibility. Our work demonstrates that minor-effect virulence factors significantly contribute to disease and provide a potential new approach to identify effective disease resistance.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Locos de Características Quantitativas , Fatores de Virulência/genética
8.
Plant Biotechnol J ; 19(5): 910-925, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220119

RESUMO

Rice varieties whose quality is graded as excellent have a lower percent grain chalkiness (PGC) of two per cent and below with higher whole grain yields upon milling, leading to higher economic returns for farmers. We have conducted a genome-wide association study (GWAS) using a combined population panel of indica and japonica rice varieties, and identified a total of 746 single nucleotide polymorphisms (SNPs) that were strongly associated with the chalk phenotype, covered 78 Quantitative Trait Loci (QTL) regions. Among them, 21 were high-value QTLs, as they explained at least 10 % of the phenotypic variance for PGC. A combined epistasis and GWAS was applied to dissect the genetics of the complex chalkiness trait, and its regulatory cascades were validated using gene regulatory networks. Promising novel epistatic interactions were found between the loci of chromosomes 6 (PGC6.1) and 7 (PGC7.8) that contributed to lower PGC. Based on haplotype mining only a few modern rice varieties confounded with a lower chalkiness, and they possess several PGC QTLs. The importance of PGC6.1 was validated through multi-parent advanced generation intercrosses and several low-chalk lines possessing superior haplotypes were identified. The results of this investigation have deciphered the underlying genetic networks that can reduce PGC to 2%, and will thus support future breeding programs to improve the grain quality of elite genetic material with high-yielding potentials.


Assuntos
Oryza , Carbonato de Cálcio , Grão Comestível/genética , Epistasia Genética , Estudo de Associação Genômica Ampla , Oryza/genética , Fenótipo , Melhoramento Vegetal
9.
Sci Data ; 7(1): 113, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265447

RESUMO

As the human population grows from 7.8 billion to 10 billion over the next 30 years, breeders must do everything possible to create crops that are highly productive and nutritious, while simultaneously having less of an environmental footprint. Rice will play a critical role in meeting this demand and thus, knowledge of the full repertoire of genetic diversity that exists in germplasm banks across the globe is required. To meet this demand, we describe the generation, validation and preliminary analyses of transposable element and long-range structural variation content of 12 near-gap-free reference genome sequences (RefSeqs) from representatives of 12 of 15 subpopulations of cultivated Asian rice. When combined with 4 existing RefSeqs, that represent the 3 remaining rice subpopulations and the largest admixed population, this collection of 16 Platinum Standard RefSeqs (PSRefSeq) can be used as a template to map resequencing data to detect virtually all standing natural variation that exists in the pan-genome of cultivated Asian rice.


Assuntos
Genoma de Planta , Oryza/genética , Produtos Agrícolas/genética , Variação Genética , Genômica
10.
Australas J Ultrasound Med ; 23(2): 121-128, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34760591

RESUMO

OBJECTIVES: (1) To study the dimensions of cricothyroid membranes (CTMs) in healthy Chinese adults in two neck positions, one with rigid neck collar (RNC) and neck extended by ultrasonography (USG). (2) To evaluate how body habitus and neck positions may affect the access time of CTMs, and thus the feasibility for ultrasound-guided cricothyroidotomy. METHODS: We scanned 39 adult staff of a local emergency department. Their CTMs were measured by two emergency physicians (EP) separately. The subjects' gender, weight, height, age, neck circumferences and BMI were collected. Image qualities (graded in 'inadequate, adequate and good') and image acquisition time of the CTMs were also recorded to ascertain proper CTM measurements. RESULTS: The mean depth of the CTM (neck extended) was 5.6 mm, and the standard deviation (SD) was 1.52. The mean depth (with RNC) was 5.97mm with SD 1.61. The mean length of the CTM (mm ± SD) with the neck extended and with the RNC was 10.5 ± 2.15 and 9.97 ± 2.24, respectively. The median image acquisition time for neck extended was 6.36s with interquartile range (IQR) of 2.32-8.4 s, while for RNC the median time was 5.60 s (IQR = 3.71-7.49; P = 0.539). Image acquisition time between the first and the second sonographers was similar. All subjects' CTM could be identified readily by USG. CONCLUSIONS: The CTM can be located quickly and reliably by bedside USG, even in overweight/obese persons with or without an RNC in place. We recommend that further study on the feasibility of bedside cricothyroidotomy with RNC kept on should be explored.

11.
Disabil Rehabil ; 42(7): 892-901, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30616401

RESUMO

Purpose: To identify the existing evidence evaluating the cost-effectiveness of physiotherapy treatments for people with neurological disorders.Methods: Multiple databases were searched from database inception until July 2018. Studies estimating the cost-effectiveness as incremental cost-effectiveness ratios, cost per quality-adjusted life year, cost per disability-adjusted life year and cost per other measurable results were included. Physiotherapy Evidence Database scale, and Consensus on Health Economic Criteria list were used for rating the quality of the evidence.Results: Ten studies involving 1462 participants were included. Aerobic training, progressive strength training, and a pragmatic physiotherapy program (combination of stretching, strength, and balance training) were reported as potentially cost-effective for older adults with vascular cognitive impairment, falls prevention in Parkinson's disease and multiple sclerosis respectively. Physiotherapy as an adjuvant for pain control was also reported as cost-effective for reflex sympathetic dystrophy. One study testing extra physiotherapy-by-physiotherapy assistant in cerebral palsy and two studies testing extra therapy using a robotic arm and Wii therapy for hand rehabilitation in stroke were reported as not cost-effective.Conclusions: There are limited studies that have evaluated the cost-effectiveness of physiotherapy treatments in neurological disorders. Three studies that combined extra physiotherapy-by-physiotherapy assistant and novel interventions with conventional physiotherapy were found not cost-effective.Implications for RehabilitationProgressive muscle strengthening exercise over a period of 6-month is reported to be cost-effective for falls prevention in people with Parkinson's diseaseAerobic training is reported as potentially cost-effective for older adults with vascular cognitive impairmentPhysiotherapy given as an adjuvant treatment is reported to be potentially cost-effective for reflex sympathetic dystrophy of less than 1-year durationOne study reported physiotherapy involving static stretching, aerobic exercise, strengthening exercise, and balance training as cost-effective for people with multiple sclerosisAdditional physiotherapy-by-physiotherapy assistant or family member for improving motor development in cerebral palsy and the use of novel physiotherapy techniques such as robotics or Wii plus conventional physiotherapy for improving arm function in stroke are found not cost-effectiveGroup therapy for improving physical activity in mild Alzheimer's disease is found not cost-effective.


Assuntos
Doença de Parkinson , Modalidades de Fisioterapia , Acidentes por Quedas , Idoso , Análise Custo-Benefício , Humanos , Anos de Vida Ajustados por Qualidade de Vida
12.
Sci Rep ; 9(1): 19605, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862941

RESUMO

Identification of Quantitative Trait Loci (QTL) has been a challenge for complex traits due to the use of populations with narrow genetic base. Most of QTL mapping studies were carried out from crosses made within the subspecies, either indica × indica or japonica × japonica. In this study we report advantages of using Multi-parent Advanced Generation Inter-Crosses global population, derived from a combination of eight indica and eight japonica elite parents, in QTL discovery for yield and grain quality traits. Genome-wide association study and interval mapping identified 38 and 34 QTLs whereas Bayesian networking detected 60 QTLs with 22 marker-marker associations, 32 trait-trait associations and 65 marker-trait associations. Notably, nine known QTLs/genes qPH1/OsGA20ox2, qDF3/OsMADS50, PL, QDg1, qGW-5b, grb7-2, qGL3/GS3, Amy6/Wx gene and OsNAS3 were consistently identified by all approaches for nine traits whereas qDF3/OsMADS50 was co-located for both yield and days-to-flowering traits on chromosome 3. Moreover, we identified a number of candidate QTLs in either one or two analyses but further validations will be needed. The results indicate that this new population has enabled identifications of significant QTLs and interactions for 16 traits through multiple approaches. Pyramided recombinant inbred lines provide a valuable source for integration into future breeding programs.


Assuntos
Grão Comestível/genética , Estudos de Associação Genética , Oryza/genética , Locos de Características Quantitativas , Teorema de Bayes , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Grão Comestível/crescimento & desenvolvimento , Flores , Genoma de Planta , Genótipo , Oryza/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
13.
Front Plant Sci ; 9: 1347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294335

RESUMO

The development of rice genotypes with micronutrient-dense grains and disease resistance is one of the major priorities in rice improvement programs. We conducted Genome-wide association studies (GWAS) using a Multi-parent Advanced Generation Inter-Cross (MAGIC) Plus population to identify QTLs and SNP markers that could potentially be integrated in biofortification and disease resistance breeding. We evaluated 144 MAGIC Plus lines for agronomic and biofortification traits over two locations for two seasons, while disease resistance was screened for one season in the screen house. X-ray fluorescence technology was used to measure grain Fe and Zn concentrations. Genotyping was carried out by genotype by sequencing and a total of 14,242 SNP markers were used in the association analysis. We used Mixed linear model (MLM) with kinship and detected 57 significant genomic regions with a -log10 (P-value) ≥ 3.0. The PH 1.1 and Zn 7.1 were consistently identified in all the four environments, ten QTLs qDF 3.1, qDF 6.2 qDF 9.1 qPH 5.1 qGL 3.1, qGW 3.1, qGW 11.1, and qZn 6.2 were detected in two environments, while two major loci qBLB 11.1 and qBLB 5.1 were identified for Bacterial Leaf Blight (BLB) resistance. The associated SNP markers were found to co-locate with known major genes and QTLs such as OsMADS50 for days to flowering, osGA20ox2 for plant height, and GS3 for grain length. Similarly, Xa4 and xa5 genes were identified for BLB resistance and Pi5(t), Pi28(t), and Pi30(t) genes were identified for Blast resistance. A number of metal homeostasis genes OsMTP6, OsNAS3, OsMT2D, OsVIT1, and OsNRAMP7 were co-located with QTLs for Fe and Zn. The marker-trait relationships from Bayesian network analysis showed consistency with the results of GWAS. A number of promising candidate genes reported in our study can be further validated. We identified several QTLs/genes pyramided lines with high grain Zn and acceptable yield potential, which are a good resource for further evaluation to release as varieties as well as for use in breeding programs.

14.
Plant Biotechnol J ; 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406604

RESUMO

Quantitative trait loci (QTL) that confer broad-spectrum resistance (BSR), or resistance that is effective against multiple and diverse plant pathogens, have been elusive targets of crop breeding programmes. Multiparent advanced generation intercross (MAGIC) populations, with their diverse genetic composition and high levels of recombination, are potential resources for the identification of QTL for BSR. In this study, a rice MAGIC population was used to map QTL conferring BSR to two major rice diseases, bacterial leaf streak (BLS) and bacterial blight (BB), caused by Xanthomonas oryzae pathovars (pv.) oryzicola (Xoc) and oryzae (Xoo), respectively. Controlling these diseases is particularly important in sub-Saharan Africa, where no sources of BSR are currently available in deployed varieties. The MAGIC founders and lines were genotyped by sequencing and phenotyped in the greenhouse and field by inoculation with multiple strains of Xoc and Xoo. A combination of genomewide association studies (GWAS) and interval mapping analyses revealed 11 BSR QTL, effective against both diseases, and three pathovar-specific QTL. The most promising BSR QTL (qXO-2-1, qXO-4-1 and qXO-11-2) conferred resistance to more than nine Xoc and Xoo strains. GWAS detected 369 significant SNP markers with distinguishable phenotypic effects, allowing the identification of alleles conferring disease resistance and susceptibility. The BSR and susceptibility QTL will improve our understanding of the mechanisms of both resistance and susceptibility in the long term and will be immediately useful resources for rice breeding programmes.

15.
BMC Genet ; 19(1): 2, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298667

RESUMO

BACKGROUND: Salinity has a significant impact on rice production in coastal, arid and semi-arid areas in many countries, including countries growing temperate rice, such as Kazakhstan. Recently, the complete genomes of 3000 rice accessions were sequenced through the 3 K rice genome project, and this set included 203 temperate japonica rice accessions. To identify salinity-tolerant germplasm and related genes for developing new salinity-tolerant breeding lines for the temperate japonica rice growing regions, we evaluated the seedling stage salinity tolerance of these sequenced temperate japonica rice accessions, and conducted genome-wide association studies (GWAS) for a series of salinity tolerance related traits. RESULTS: There were 27 accessions performed well (SES < 5.0) under moderate salinity stress (EC12), and 5 accessions were tolerant under both EC12 and EC18. A total of 26 QTLs were identified for 9 measured traits. Eleven of these QTLs were co-located with known salinity tolerance genes. QTL/gene clusters were observed on chromosome 1, 2, 3, 6, 8 and 9. Six candidate genes were identified for five promising QTLs. The alleles of major QTL Saltol and gene O S HKT1;5 (SKC1) for Na+/K+ ratio identified in indica rice accessions were different from those in the temperate japonica rice accessions used in this study. CONCLUSION: Salinity tolerant temperate japonica rice accessions were identified in this study, these accessions are important resources for breeding programs. SNPs located in the promising QTLs and candidate genes could be used for future gene validation and marker assisted selection. This study provided useful information for future studies on genetics and breeding of salinity tolerance in temperate japonica rice.


Assuntos
Estudo de Associação Genômica Ampla , Oryza/genética , Tolerância ao Sal , Oryza/classificação , Oryza/fisiologia , Polimorfismo de Nucleotídeo Único , Potássio/análise , Locos de Características Quantitativas , Plântula/genética , Plântula/fisiologia , Sódio/análise
16.
Front Plant Sci ; 8: 1883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163607

RESUMO

Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area) has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa). A previous high throughput screen identified five mutant rice lines (cv. IR64) with increased vein densities and associated narrower leaf widths (Feldman et al., 2014). Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number) is a trait that may confer increased photosynthetic efficiency without increased transpiration.

17.
G3 (Bethesda) ; 7(6): 1721-1730, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592653

RESUMO

Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Genômica , Oryza/genética , Locos de Características Quantitativas , Cruzamento , Biologia Computacional/métodos , Efeito Fundador , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Haplótipos , Fenótipo , Característica Quantitativa Herdável , Recombinação Genética
18.
Sci Rep ; 7: 42839, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220807

RESUMO

To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.


Assuntos
Genoma de Planta , Oryza/genética , Agricultura , Alelos , Biomassa , Mapeamento Cromossômico , Grão Comestível/crescimento & desenvolvimento , Variação Genética , Genótipo , Oryza/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas
19.
Rice (N Y) ; 9(1): 50, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27671164

RESUMO

BACKGROUND: Information on the effect of stress on the allele-specific expression (ASE) profile of rice hybrids is limited. More so, the association of allelically imbalanced genes to important traits is yet to be understood. Here we assessed allelic imbalance (AI) in the heterozygote state of rice under non- and water-stress treatments and determined association of asymmetrically expressed genes with grain yield (GY) under drought stress by in-silico co-localization analysis and selective genotyping. The genotypes IR64, Apo and their F1 hybrid (IR64 × Apo) were grown under normal and water-limiting conditions. We sequenced the total RNA transcripts for all genotypes then reconstructed the two chromosomes in the heterozygote. RESULTS: We are able to estimate the transcript abundance of and the differential expression (DE) between the two parent-specific alleles in the rice hybrids. The magnitude and direction of AI are classified into two categories: (1) symmetrical or biallelic and (2) asymmetrical. The latter can be further classified as either IR64- or Apo-favoring gene. Analysis showed that in the hybrids grown under non-stress conditions, 179 and 183 favor Apo- and IR64-specific alleles, respectively. Hence, the number of IR64- and Apo-favoring genes is relatively equal. Under water-stress conditions, 179 and 255 favor Apo- and IR64-specific alleles, respectively, indicating that the number of allelically imbalanced genes is skewed towards IR64. This is nearly 40-60 % preference for Apo and IR64 alleles, respectively, to the hybrid transcriptome. We also observed genes which exhibit allele preference switching when exposed to water-stress conditions. Results of in-silico co-localization procedure and selective genotyping of Apo/IR64 F3:5 progenies revealed significant association of several asymmetrically expressed genes with GY under drought stress conditions. CONCLUSION: Our data suggest that water stress skews AI on a genome-wide scale towards the IR64 allele, the cross-specific maternal allele. Several asymmetrically expressed genes are strongly associated with GY under drought stress which may shed hints that genes associated with important traits are allelically imbalanced. Our approach of integrating hybrid expression analysis and QTL mapping analysis may be an efficient strategy for shortlisting candidate genes for gene discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...