Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Chemother Pharmacol ; 73(2): 349-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292700

RESUMO

BACKGROUND: As tumors evolve, they upregulate glucose metabolism while also encountering intermittent periods of glucose deprivation. Here, we investigate mechanisms by which pancreatic cancer cells respond to therapeutic (2-deoxy-D-glucose, 2-DG) and physiologic (glucose starvation, GS) forms of glucose restriction. METHODS: From a tumor cell line (1420) that is unusually sensitive to 2-DG under normoxia, low (14DG2)- and high (14DG5)-dose resistant cell lines were selected and used to probe the metabolic pathways involved with their response to different forms of glucose deprivation. RESULTS: Muted induction of the unfolded protein response was found to correlate with resistance to 2-DG. Additionally, 14DG2 displayed reduced 2-DG uptake, while 14DG5 was cross-resistant to tunicamycin, suggesting it has enhanced ability to manage glycosylation defects. Conversely, 2-DG-resistant cell lines were more sensitive than their parental cell line to GS, which coincided with lowered levels of glycogen phosphorylase (PYGB) and reduced breakdown of glycogen to glucose in the 2-DG-resistant cell lines. Moreover, by inhibiting PYGB in the parental cell line, sensitivity to GS was increased. CONCLUSIONS: Overall, the data demonstrate that the manner in which glucose is restricted in tumor cells, i.e., therapeutic or physiologic, leads to differential biological responses involving distinct glucose metabolic pathways. Moreover, in evolving tumors where glucose restriction occurs, the identification of PYGB as a metabolic target may have clinical application.


Assuntos
Desoxiglucose/farmacologia , Glucose/deficiência , Glucose/metabolismo , Glicogênio Fosforilase/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Glicólise , Humanos , Isoenzimas , Neoplasias Pancreáticas/enzimologia , Resposta a Proteínas não Dobradas
2.
Immunol Res ; 57(1-3): 159-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24203444

RESUMO

Kaposi's sarcoma herpesvirus or human herpesvirus-8 (KSHV/HHV-8) is the etiological agent of Kaposi's sarcoma (KS), an AIDS-defining angioproliferative neoplasm that continues to be a major global health problem and, of primary effusion lymphoma (PEL), a rare incurable B-cell lymphoma. This review describes the research from our laboratory and its collaborators to uncover molecular mechanisms of viral oncogenesis in order to develop new pathogenesis-based therapies to the KSHV-induced AIDS malignancies KS and PEL. They include the discovery of the viral angiogenic oncogene G protein-coupled receptor (vGPCR), the development of mouse models of KSHV and oxidative stress-induced KS, the identification of the role of Rac1-induced ROS in viral oncogenesis of KS and the development of novel therapeutic approaches able to target both latent and lytic oncogenic KSHV infection.


Assuntos
Transformação Celular Viral , Infecções por Herpesviridae/complicações , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/etiologia , Animais , Modelos Animais de Doenças , Humanos , Estresse Oxidativo , Comunicação Parácrina , Receptores Acoplados a Proteínas G/metabolismo , Sarcoma de Kaposi/metabolismo , Pesquisa Translacional Biomédica , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Antioxid Redox Signal ; 18(1): 80-90, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22746102

RESUMO

AIMS: Kaposi's sarcoma (KS), caused by the Kaposi's sarcoma herpesvirus (KSHV), is an AIDS-associated cancer characterized by angiogenesis and proliferation of spindle cells. Rac1-activated reactive oxygen species (ROS) production has been implicated in KS tumorigenesis. We used an animal model of KSHV-induced Kaposi's sarcomagenesis (mECK36) to study the role of ROS in KS and the efficacy of N-acetyl l-cysteine (NAC) in inhibiting or preventing KS. RESULTS: Signaling by the KSHV early lytic gene viral G protein-coupled receptor (vGPCR) activated ROS production in mECK36 cells via a Rac1-NADPH oxidase pathway. Induction of the lytic cycle in KSHV-infected KS spindle cells upregulated ROS along with upregulation of vGPCR expression. We also found that expression of the major latent transcript in 293 cells increased ROS levels. ROS scavenging with NAC halted mECK36 tumor growth in a KSHV-specific manner. NAC inhibited KSHV latent gene expression as well as tumor angiogenesis and lymphangiogenesis. These effects correlated with the reduction of vascular endothelial growth factor (VEGF), c-myc, and cyclin D1, and could be explained on the basis of inhibition of STAT3 tyrosine phosphorylation. NAC prevented mECK36 de novo tumor formation. Molecular analysis of NAC-resistant tumors revealed a strong upregulation of Rac1 and p40(PHOX). INNOVATION AND CONCLUSION: Our results demonstrate that ROS-induction by KSHV plays a causal role in KS oncogenesis by promoting proliferation and angiogenesis. Our results show that both ROS and their molecular sources can be targeted therapeutically using NAC or other Food and Drug Administration (FDA)-approved inhibitors for prevention and treatment of AIDS-KS.


Assuntos
Transformação Celular Neoplásica/metabolismo , Herpesvirus Humano 8/genética , Espécies Reativas de Oxigênio/metabolismo , Sarcoma de Kaposi/virologia , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Inibidores da Angiogênese/farmacologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/prevenção & controle , Neuropeptídeos/metabolismo , Estresse Oxidativo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/prevenção & controle , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
4.
J Exp Med ; 209(11): 1985-2000, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23027923

RESUMO

Kaposi's sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species-dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1-N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1-specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.


Assuntos
Galectina 1/metabolismo , Neovascularização Patológica/metabolismo , Polissacarídeos/metabolismo , Sarcoma de Kaposi/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Galectina 1/genética , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Hipóxia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/prevenção & controle , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Antimicrob Agents Chemother ; 56(11): 5794-803, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926574

RESUMO

Lytic replication of the Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for the maintenance of both the infected state and characteristic angiogenic phenotype of Kaposi's sarcoma and thus represents a desirable therapeutic target. During the peak of herpesvirus lytic replication, viral glycoproteins are mass produced in the endoplasmic reticulum (ER). Normally, this leads to ER stress which, through an unfolded protein response (UPR), triggers phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), resulting in inhibition of protein synthesis to maintain ER and cellular homeostasis. However, in order to replicate, herpesviruses have acquired the ability to prevent eIF2α phosphorylation. Here we show that clinically achievable nontoxic doses of the glucose analog 2-deoxy-d-glucose (2-DG) stimulate ER stress, thereby shutting down eIF2α and inhibiting KSHV and murine herpesvirus 68 replication and KSHV reactivation from latency. Viral cascade genes that are involved in reactivation, including the master transactivator (RTA) gene, glycoprotein B, K8.1, and angiogenesis-regulating genes are markedly decreased with 2-DG treatment. Overall, our data suggest that activation of UPR by 2-DG elicits an early antiviral response via eIF2α inactivation, which impairs protein synthesis required to drive viral replication and oncogenesis. Thus, induction of ER stress by 2-DG provides a new antiherpesviral strategy that may be applicable to other viruses.


Assuntos
Antivirais/farmacologia , Desoxiglucose/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Herpesvirus Humano 8/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/virologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fosforilação , Ativação Transcricional/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Ensaio de Placa Viral , Proteínas Virais/biossíntese , Proteínas Virais/genética , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
J Biol Chem ; 283(1): 529-540, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17974567

RESUMO

Anthrax lethal toxin (LT), a virulence factor secreted by Bacillus anthracis, is selectively toxic to human melanomas with the BRAF V600E activating mutation because of its proteolytic activities toward the mitogen-activated protein kinase kinases (MEKs). To develop LT variants with lower in vivo toxicity and high tumor specificity, and therefore greater potential for clinical use, we generated a mutated LT that requires activation by matrix metalloproteinases (MMPs). This engineered toxin was less toxic than wild-type LT to mice because of the limited expression of MMPs by normal cells. Moreover, the systemically administered toxin produced greater anti-tumor effects than wild-type LT toward human xenografted tumors. This was shown to result from its greater bioavailability, a consequence of the limited uptake and clearance of the modified toxin by normal cells. Furthermore, the MMP-activated LT had very potent anti-tumor activity not only to human melanomas containing the BRAF mutation but also to other tumor types, including lung and colon carcinomas regardless of their BRAF status. Tumor histology and in vivo angiogenesis assays showed that this anti-tumor activity is due largely to the indirect targeting of tumor vasculature and angiogenic processes. Thus, even tumors genetically deficient in anthrax toxin receptors were still susceptible to the toxin therapy in vivo. Moreover, the modified toxin also displayed lower immunogenicity compared with the wild-type toxin. All these properties suggest that this MMP-activated anti-tumor toxin has potential for use in cancer therapy.


Assuntos
Antígenos de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Metaloproteinases da Matriz/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HT29 , Humanos , Imuno-Histoquímica , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Microbiol ; 9(4): 977-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17381430

RESUMO

Mutations in capillary morphogenesis gene 2 (CMG2), one of the two closely related proteins that act as anthrax toxin receptors, cause two rare human autosomal recessive conditions, juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH). Here we demonstrate that CMG2 proteins with certain JHF- and ISH-associated single amino acid substitutions in their von Willebrand factor A domain or transmembrane region do not function as anthrax toxin receptors. However, an ISH-associated CMG2 variant having a truncated cytosolic domain does still function as an anthrax receptor, and in fact makes cells hyper-sensitive to toxin, distinguishing the roles of CMG2 in physiology and anthrax pathology. Site-specific mutagenesis was used to characterize the role that domain 2 of the anthrax toxin protective antigen (PA) plays in interaction with CMG2, focusing on the interaction between the PA 2beta(3)-2beta(4) loop and a pocket (Glu-122 pocket) adjacent to the metal ion-dependent adhesion site in CMG2. Substitutions that disrupted the salt bridge between PA Arg-344 and CMG2 Glu-122 decreased the affinity of PA to CMG2 three- to fourfold. Furthermore, mutation of CMG2 Tyr-119 (within the Glu-122 pocket) to His lowered the pH threshold for PA prepore-to-pore conversion in the endocytic pathway.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Relação Estrutura-Atividade , Transfecção
8.
J Mol Biol ; 338(4): 795-809, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15099746

RESUMO

Using DTT(red) as the reducing agent, the kinetics of the reductive unfolding of onconase, a frog ribonuclease, has been examined. An intermediate containing three disulfides, Ir, that is formed rapidly in the reductive pathway, is more resistant to further reduction than the parent molecule, indicating that the remaining disulfides in onconase are less accessible to DTT(red). Disulfide-bond mapping of Ir indicated that it is a single species lacking the (30-75) disulfide bond. The reductive unfolding pattern of onconase is consistent with an analysis of the exposed surface area of the cysteine sulfur atoms in the (30-75) disulfide bond, which reveals that these atoms are about four- and sevenfold, respectively, more exposed than those in the next two maximally exposed disulfides. By contrast, in the reductive unfolding of the homologue, RNase A, there are two intermediates, arising from the reduction of the (40-95) and (65-72) disulfide bonds, which takes place in parallel, and on a much longer time-scale, compared to the initial reduction of onconase; this behavior is consistent with the almost equally exposed surface areas of the cysteine sulfur atoms that form the (40-95) and (65-72) disulfide bonds in RNase A and the fourfold more exposed cysteine sulfur atoms of the (30-75) disulfide bond in onconase. Analysis and in silico mutation of the residues around the (40-95) disulfide bond in RNase A, which is analogous to the (30-75) disulfide bond of onconase, reveal that the side-chain of tyrosine 92 of RNase A, a highly conserved residue among mammalian pancreatic ribonucleases, lies atop the (40-95) disulfide bond, resulting in a shielding of the corresponding sulfur atoms from the solvent; such burial of the (30-75) sulfur atoms is absent from onconase, due to the replacement of Tyr92 by Arg73, which is situated away from the (30-75) disulfide bond and into the solvent, resulting in the large exposed surface-area of the cysteine sulfur atoms forming this bond. Removal of Tyr92 from RNase A resulted in the relatively rapid reduction of the mutant to form a single intermediate (des [40-95] Y92A), i.e. it resulted in an onconase-like reductive unfolding behavior. The reduction of the P93A mutant of RNase A proceeds through a single intermediate, the des [40-95] P93A species, as in onconase. Although mutation of Pro93 to Ala does not increase the exposed surface area of the (40-95) cysteine sulfur atoms, structural analysis of the mutant reveals that there is greater flexibility in the (40-95) disulfide bond compared to the (65-72) disulfide bond that may make the (40-95) disulfide bond much easier to expose, consistent with the reductive unfolding pathway and kinetics of P93A. Mutation of Tyr92 to Phe92 in RNase A has no effect on its reductive unfolding pathway, suggesting that the hydrogen bond between the hydroxyl group of Tyr92 and the carbonyl group of Lys37 has no impact on the local unfolding free energy required to expose the (40-95) disulfide bond. Thus, these data shed light on the differences between the reductive unfolding pathways of the two homologous proteins and provide a structural basis for the origin of this difference.


Assuntos
Desnaturação Proteica , Ribonuclease Pancreático/química , Ribonucleases/química , Animais , Bovinos , Cisteína/química , Dissulfetos/química , Modelos Moleculares , Oxirredução , Conformação Proteica , Rana pipiens , Ribonuclease Pancreático/genética , Ribonucleases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...