Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1447536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224602

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.


Assuntos
Polpa Dentária , Vesículas Extracelulares , Imunomodulação , Inflamação , NF-kappa B , Polpa Dentária/citologia , Polpa Dentária/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Animais , Inflamação/imunologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células Cultivadas , Transdução de Sinais , Células-Tronco/imunologia , Células-Tronco/metabolismo , Masculino
2.
Acta Biomater ; 173: 199-216, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918471

RESUMO

We examined the effect of a nanoscale titanium surface topography (D) versus two hybrid micro/nanoscale topographies (B and OS) on adherent mesenchymal stem cells (MSCs) and bone marrow derived macrophages (BMMs) function in cell culture and in vivo. In the in vitro study, compared to OS and B surfaces, D surface induced earlier and greater cell spreading, and earlier and profound mRNA expression of RUNX2, Osterix and BMP2 in MSCs. D surface induced earlier and higher expression of RUNX2 and BMP2 and lower expression of inflammatory genes in implant adherent cells in vivo. Measurement of osteogenesis at implant surfaces showed greater bone-to-implant contact at D versus OS surfaces after 21 days. We explored the cell population on the D and OS implant surfaces 24 h after placement using single-cell RNA sequencing and identified distinct cell clusters including macrophages, neutrophils and B cells. D surface induced lower expression and earlier reduction of inflammatory genes expression in BMMs in vitro. BMMs on D, B and OS surfaces demonstrated a marked increase of BMP2 expression after 1 and 3 days, and this increase was significantly higher on D surface at day 3. Our data implicates a dynamic process that may be influenced by nanotopography at multiple stages of osseointegration including initial immunomodulation, recruitment of MSCs and later osteoblastic differentiation leading to bone matrix production and mineralization. The results suggest that a nanoscale topography (D) favorably modulates adherent macrophage polarization toward anti-inflammatory and regenerative phenotypes and promotes the osteoinductive phenotype of adherent mesenchymal stem cells. STATEMENT OF SIGNIFICANCE: Our manuscript contains original data developed to define effects of a novel nanotopography on the process of osseointegration at the cell and tissue level.  Few studies have compared the effects of a nanoscale surface versus the more typical hybrid micro/nano-scale surfaces used today. We have utilized single-cell RNA sequencing for the first time to identify earliest cell populations on implant surfaces in vivo. We provide data indicating that the nanoscale surface acts upon both osteoprogenitor and immune cell (macrophages) to alter the process of bone formation in a surface-specific manner. This work represents new observations regarding osseointegration and immunomodulation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osseointegração , Diferenciação Celular , Osteogênese , Expressão Gênica , Propriedades de Superfície , Titânio/farmacologia
3.
Front Cell Dev Biol ; 11: 1127594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846585

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) possess excellent immunomodulatory and therapeutic properties. While beneficial, from a translational perspective, extracellular vesicles with consistent functionality and target specificity are required to achieve the goals of precision medicine and tissue engineering. Prior research has identified that the miRNA composition of mesenchymal stem cell derived extracellular vesicles contributes significantly towards extracellular vesicles functionality. In this study, we hypothesized that mesenchymal stem cell derived extracellular vesicle functionality can be rendered pathway-specific using a miRNA-based extracellular vesicles engineering approach. To test this hypothesis, we utilized bone repair as a model system and the BMP2 signaling cascade as the targeted pathway. We engineered mesenchymal stem cell extracellular vesicles to possess increased levels of miR-424, a potentiator of the BMP2 signaling cascade. We evaluated the physical and functional characteristics of these extracellular vesicles and their enhanced ability to trigger the osteogenic differentiation of naïve mesenchymal stem cell in vitro and facilitate bone repair in vivo. Results indicated that the engineered extracellular vesicles retained their extracellular vesicles characteristics and endocytic functionality and demonstrated enhanced osteoinductive function by activating SMAD1/5/8 phosphorylation and mesenchymal stem cell differentiation in vitro and enhanced bone repair in vivo. Furthermore, the inherent immunomodulatory properties of the mesenchymal stem cell derived extracellular vesicles remained unaltered. These results serve as a proof-of-concept for miRNA-based extracellular vesicles engineering approaches for regenerative medicine applications.

4.
Acta Biomater ; 158: 782-797, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638942

RESUMO

Mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions. Through miRNA seq analyses, miRNA-424 was identified as a candidate for the retina to overexpress in EVs for enhancing cytoprotection and anti-inflammatory effects. FEEs (functionally engineered EVs) overexpressing miR424 (FEE424) significantly enhanced neuroprotection and anti-inflammatory activities in vitro in retinal cells. FEE424 functioned by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in retinal Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery after retinal ischemic insult. In an in vivo model of retinal ischemia, native, HPC, and FEE424 MSC EVs robustly and similarly restored function to close to baseline, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. These results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component. STATEMENT OF SIGNIFICANCE: We show that functionally engineered extracellular vesicles (FEEs) from mesenchymal stem cells (MSCs) provide cytoprotection in rat retina subjected to ischemia. FEEs overexpressing microRNA 424 (FEE424) function by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery. In an in vivo model of retinal ischemia in rats, native, hypoxic-preconditioned (HPC), and FEE424 MSC EVs robustly and similarly restored function, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. The results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Doenças Retinianas , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Isquemia/terapia , Citocinas/metabolismo , Doenças Retinianas/metabolismo , Anti-Inflamatórios , Hipóxia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo
5.
Cells ; 11(18)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139426

RESUMO

In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.


Assuntos
Materiais Biocompatíveis , Vesículas Extracelulares , Engenharia Tecidual , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA