Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3125, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449590

RESUMO

Atomic force microscopy is used to conduct single-asperity friction measurements at a water-graphite interface. Local mapping of the frictional force, which is based on the degree of the cantilever twisting, shows nearly friction-free when a tip scans over a nanobubble. Surprisingly, apart from being gapless, the associated friction loop exhibits a tilt in the cantilever twisting versus the tip's lateral displacement with the slope depending on the loading force. The sign of the slope reverses at around zero loading force. In addition, the measured normal and lateral tip-sample interactions exhibit unison versus tip-sample separation. Theoretical analysis, based on the balance of forces on the tip originated from the capillary force of the nanobubble and the torsion of the cantilever, offers quantitative explanations for both the tilted friction loop and the unison of force curves. The analysis may well apply in a wider context to the lateral force characterization on cap-shaped fluid structures such as liquid droplets on a solid substrate. This study further points to a new direction for friction reduction between solids in a liquid medium.

2.
Phys Rev E ; 94(1-1): 012401, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575158

RESUMO

Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.


Assuntos
Actinas/metabolismo , Listeria monocytogenes/fisiologia , Movimento (Física) , Listeria monocytogenes/citologia , Modelos Biológicos
3.
Phys Rev E ; 93(6): 062405, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415296

RESUMO

Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.


Assuntos
Actinas/metabolismo , Modelos Biológicos , Movimento (Física) , Fatores de Tempo
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061902, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367971

RESUMO

Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.


Assuntos
Actinas/metabolismo , Biofísica/métodos , Listeria monocytogenes/citologia , Movimento , Trifosfato de Adenosina/metabolismo , Simulação por Computador , Análise de Fourier , Hidrólise , Modelos Biológicos , Modelos Estatísticos , Polímeros/metabolismo , Estresse Mecânico , Fatores de Tempo
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046118, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230356

RESUMO

We address the slow generation of crack networks as a problem of pattern formation. Issues of pattern selection and the associated statistical properties were considered by means of a detailed theoretical analysis and simulations of a discrete spring-block model. Developed after observations in desiccation experiments, the model describes the nucleation and propagation of cracks in a layer in contact with a frictional substrate. Competition between stress concentration at crack tips and pinning effect by friction leads to a cellular pattern. We characterized the events prior to cracking by a growth of correlation in the stress field, and those during cracking by progressive damages manifested in the number of broken bonds and energy releases. Qualitatively distinct regimes were shown to correspond to different stages of development. A host of scaling behaviors in measurable quantities were derived and verified. In particular, consistent with experiments, fragment area was found to be quadratic in the layer thickness and be smaller with increasing friction, which explains why morphologically similar patterns may occur over a diverse length scales.


Assuntos
Modelos Teóricos , Estresse Mecânico , Elasticidade , Fatores de Tempo
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056107, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16802998

RESUMO

We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...