Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272177

RESUMO

ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.


Assuntos
Adipogenia , Insulina , Camundongos , Animais , Diferenciação Celular/genética , Adipogenia/genética , Transdução de Sinais , RNA Interferente Pequeno , Proteína 8 Semelhante a Angiopoietina
2.
Eur J Pharmacol ; 944: 175589, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773683

RESUMO

The cannabinoid receptor CB1R is expressed in pancreatic ß-cells; CB1R increased activity is associated with diabetes, obesity, cardiovascular disorders as well as decreased insulin secretion and insulin resistance. CB1R was shown to signal through G-protein coupling as well as ß-arrestins in ß-cells. Peripherally restricted CB1R inverse agonists purportedly have beneficial effects on insulin secretion in ß-cells, without the unwanted effects in the central nervous system. Here we show that a peripherally restricted CB1R inverse agonist, MRI-1891, augments glucose stimulated insulin secretion in isolated human pancreatic islets and mouse islets. The insulin secretion enhancing effect of MRI-1891 is comparable to exendin-4, an analogue of the glucagon like peptide-1 (GLP1). Moreover, MRI-1891 treatment protects isolated human islet cells against cytokine-induced apoptosis, similar to exendin-4. Thus, MRI-1891, a new class of CB1R inverse agonist, may be considered a potential therapeutic for both type 1 and type 2 diabetes because of its ability to protect pancreatic ß-cells from cytokine toxicity and to promote insulin secretion.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Secreção de Insulina , Agonismo Inverso de Drogas , Insulina/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia
3.
Mol Metab ; 66: 101609, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198384

RESUMO

OBJECTIVE: Glycerol-3-phosphate (Gro3P) phosphatase (G3PP) hydrolyzes Gro3P to glycerol that exits the cell, thereby operating a "glycerol shunt", a metabolic pathway that we identified recently in mammalian cells. We have investigated the role of G3PP and the glycerol shunt in the regulation of glucose metabolism and lipogenesis in mouse liver. METHODS: We generated hepatocyte-specific G3PP-KO mice (LKO), by injecting AAV8-TBG-iCre to male G3PPfl/fl mice. Controls received AAV8-TBG-eGFP. Both groups were fed chow diet for 10 weeks. Hyperglycemia (16-20 mM) was induced by glucose infusion for 55 h. Hepatocytes were isolated from normoglycemic mice for ex vivo studies and targeted metabolomics were measured in mice liver after glucose infusion. RESULTS: LKO mice showed no change in body weight, food intake, fed and fasted glycemia but had increased fed plasma triglycerides. Hepatic glucose production from glycerol was increased in fasted LKO mice. LKO mouse hepatocytes displayed reduced glycerol production, elevated triglyceride and lactate production at high glucose concentration. Hyperglycemia in LKO mice led to increased liver weight and accumulation of triglycerides, glycogen and cholesterol together with elevated levels of Gro3P, dihydroxyacetone phosphate, acetyl-CoA and some Krebs cycle intermediates in liver. Hyperglycemic LKO mouse liver showed elevated expression of proinflammatory cytokines and M1-macrophage markers accompanied by increased plasma triglycerides, LDL/VLDL, urea and uric acid and myocardial triglycerides. CONCLUSIONS: The glycerol shunt orchestrated by G3PP acts as a glucose excess detoxification pathway in hepatocytes by preventing metabolic disturbances that contribute to enhanced liver fat, glycogen storage, inflammation and lipid build-up in the heart. We propose G3PP as a novel therapeutic target for hepatic disorders linked to nutrient excess.


Assuntos
Glicerol , Hiperglicemia , Monoéster Fosfórico Hidrolases , Animais , Masculino , Camundongos , Glucose/metabolismo , Glicerol/metabolismo , Glicogênio/metabolismo , Hiperglicemia/metabolismo , Fígado/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Triglicerídeos/metabolismo
4.
Obes Rev ; 22(8): e13248, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33738905

RESUMO

Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Ceramidas , Humanos , Esfingolipídeos , Esfingomielina Fosfodiesterase
5.
Pharmaceutics ; 9(4)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994701

RESUMO

Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms), rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC). Loratadine (IC50 31 and 15 µM) and atorvastatin (IC50 ~130 and 210 µM) demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation). Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25-35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity.

6.
J Pharmacol Exp Ther ; 352(3): 552-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563901

RESUMO

The organic anion transporting polypeptide 1A2 (OATP1A2), a membrane drug transporter expressed on important organs (such as the brain, kidney, and intestine) may be a key element in the disposition of drugs. Previous studies demonstrated that it could transport a broad spectrum of substrates, including endogenous molecules and clinically relevant drugs, such as several ß-blockers and 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors. The primary objective of this study was to investigate OATP1A2 transport activity using rosuvastatin as a probe substrate and evaluate competitive inhibition of its transport by ß-blockers. Rosuvastatin transport was saturable, with a Km of 60.2 µM. With the exception of carvedilol (IC50 of 3.2 µM), all of the other ß-blockers that were evaluated had a small or insignificant effect on OATP1A2-mediated uptake of rosuvastatin. Carvedilol differs from the other ß-blockers by the tricyclic moiety in its chemical structure. As a secondary objective, the transport of a series of tricyclic compounds by OATP1A2 and their potential for rosuvastatin transport inhibition were evaluated. Tricyclic compounds were not OATP1A2 substrates. On the other hand, tricyclic compounds with a short aliphatic amine chain inhibited OATP1A2-mediated rosuvastatin transport. Our data suggest that these drugs may modulate the transport of OATP1A2 substrates and may affect drug actions.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Antidepressivos Tricíclicos/farmacologia , Transportadores de Ânions Orgânicos/metabolismo , Antagonistas Adrenérgicos beta/química , Antidepressivos Tricíclicos/química , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...