Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 238(Pt 2): 117196, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778603

RESUMO

Chlorpheniramine (CPM) and Ciprofloxacin (CIP) adsorption onto a granular (GAC) and pelletized activated carbon (PAC) analyzing the physicochemical mechanisms involved using the carbon's characterization were studied. Adsorption isotherm studies were performed at temperatures of 25 °C at pH values of 4, 7 and 9 and at 45 °C at a pH of 7. The characterization demonstrated that GAC has a predominantly acid character due to its predominantly negative surface charge and acidic site concentration alongside the characteristic bands detected in the X-ray Photoemission Spectroscopy (XPS) study. On the other hand, PAC presented a mostly basic character due to its positive surface charge and basic site concentrations. The adsorption isotherm studies demonstrated that the Freundlich isotherm better described the equilibrium data with an average deviation percentage of 7.45 and 6.74 for GAC and PAC. The temperature and desorption studies demonstrated that the adsorption process occurs through a chemisorption mechanism, and the pH study alongside the GAC and PAC characterization demonstrated that the mechanisms involved are a combination of electrostatic interactions and pi-pi interactions between the CPM and CIP molecules and the carbon's surface. These results demonstrate that the adsorption process of these pharmaceutical compounds is done through a combination of physical and chemical interactions.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carvão Vegetal/química , Clorfeniramina , Poluentes Químicos da Água/química , Cinética , Adsorção
2.
Bull Environ Contam Toxicol ; 90(6): 650-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23400863

RESUMO

The removal from the solution and the accumulation of As, Cd and Cr by Typha latifolia was studied. Small plants of T. latifolia, collected from a non-contaminated site, were exposed to individual concentrations of As, Cd and Cr for 10 days. The ability of T. latifolia for the removal of toxic elements ranged from 23% to 54% for As, 43%-55% for Cd and 28%-73% for Cr. The accumulation of toxic elements in T. latifolia occurred mainly in the roots. The results suggest that T. latifolia can be considered as an interesting alternative for treating aquatic effluents polluted with toxic trace elements.


Assuntos
Arsênio/isolamento & purificação , Cádmio/isolamento & purificação , Cromo/isolamento & purificação , Typhaceae/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cromo/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA