Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 955: 175912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454968

RESUMO

The glucose-dependent insulinotropic polypeptide (GIPR) and glucagon-like peptide (GLP-1R) receptor agonists are insulin secretagogues that have long been shown to improve glycemic control and dual agonists have demonstrated successful weight loss in the clinic. GIPR and GLP-1R populations are located in the dorsal vagal complex where receptor activity-modifying proteins (RAMPs) are also present. According to recent literature, RAMPs not only regulate the signaling of the calcitonin receptor, but also that of other class B G-protein coupled receptors, including members of the glucagon receptor family such as GLP-1R and GIPR. The aim of this study was to investigate whether the absence of RAMP1 and RAMP3 interferes with the action of GIPR and GLP-1R agonists on body weight maintenance and glucose control. To this end, WT and RAMP 1/3 KO mice were fed a 45% high fat diet for 22 weeks and were injected daily with GLP-1R agonist (2 nmol/kg/d; NN0113-2220), GIPR agonist (30 nmol/kg/d; NN0441-0329) or both for 3 weeks. While the mono-agonists exerted little to no body weight lowering and anorectic effects in WT or RAMP1/3 KO mice, but at the given doses, when both compounds were administered together, they synergistically reduced body weight, with a greater effect observed in KO mice. Finally, GLP-1R and GIP/GLP-1R agonist treatment led to improved glucose tolerance, but the absence of RAMPs resulted in an improvement of the HOMA-IR score. These data suggest that RAMPs may play a crucial role in modulating the pharmacological actions of GLP-1 and GIP receptors.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores dos Hormônios Gastrointestinais , Animais , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas
2.
Front Vet Sci ; 9: 949410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118338

RESUMO

Aortic insufficiency caused by paravalvular leakage (PVL) is one of the most feared complications following transcatheter aortic valve replacement (TAVI) in patients. Domestic pigs (Sus scrofa domestica) are a popular large animal model to study such conditions and develop novel diagnostic and therapeutic techniques. However, the models based on prosthetic valve implantation are time intensive, costly, and often hamper further hemodynamic measurements such as PV loop and 4D MRI flow by causing implantation-related wall motion abnormalities and degradation of MR image quality. This study describes in detail, the establishment of a minimally invasive porcine model suitable to study the effects of mild-to-moderate "paravalvular" aortic regurgitation on left ventricular (LV) performance and blood flow patterns, particularly under the influence of altered afterload, preload, inotropic state, and heart rate. Six domestic pigs (Swiss large white, female, 60-70 kg of body weight) were used to establish this model. The defects on the hinge point of aortic leaflets and annulus were created percutaneously by the pierce-and-dilate technique either in the right coronary cusp (RCC) or in the non-coronary cusp (NCC). The hemodynamic changes as well as LV performance were recorded by PV loop measurements, while blood flow patterns were assessed by 4D MRI. LV performance was additionally challenged by pharmaceutically altering cardiac inotropy, chronotropy, and afterload. The presented work aims to elaborate the dos and don'ts in porcine models of aortic insufficiency and intends to steepen the learning curve for researchers planning to use this or similar models by giving valuable insights ranging from animal selection to vascular access choices, placement of PV Loop catheter, improvement of PV loop data acquisition and post-processing and finally the induction of paravalvular regurgitation of the aortic valve by a standardized and reproducible balloon induced defect in a precisely targeted region of the aortic valve.

3.
Front Physiol ; 12: 772707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222059

RESUMO

It is estimated that 30% of pregnant women worldwide are overweight or obese, leading to adverse health effects for both mother and child. Women with obesity during pregnancy are at higher risk for developing both metabolic and mental disorders, such as diabetes and depression. Numerous studies have used rodent models of maternal obesity to understand its consequences on the offspring, yet characterization of changes in the dams is rare, and most rodent models rely solely on a high fat diet to induce maternal obesity, without regarding genetic propensity for obesity. Here we present the influence of both peripartum high energy diet (HE) and obesity-proneness on maternal health using selectively bred diet-resistant (DR) and diet-induced obese (DIO) rat dams. Outbred Sprague-Dawley rats were challenged with HE diet prior to mating and bred according to their propensity to gain weight. The original outbred breeding dams (F0) were maintained on low-fat chow during pregnancy and lactation. By comparison, the F1 dams consuming HE diet during pregnancy and lactation displayed higher gestational body weight gain (P < 0.01), and HE diet caused increased meal size and reduced meal frequency (P < 0.001). Sensitivity to the hormone amylin was preserved during pregnancy, regardless of diet. After several rounds of selective breeding, DIO and DR dams from generation F3 were provided chow or HE during pregnancy and lactation and assessed for their postpartum physiology and behaviors. We observed strong diet and phenotype effects on gestational weight gain, with DIO-HE dams gaining 119% more weight than DR-chow (P < 0.001). A high-resolution analysis of maternal behaviors did not detect main effects of diet or phenotype, but a subset of DIO dams showed delayed nursing behavior (P < 0.05). In generation F6/F7 dams, effects on gestational weight gain persisted (P < 0.01), and we observed a main effect of phenotype during a sucrose preference test (P < 0.05), with DIO-chow dams showing lower sucrose preference than DR controls (P < 0.05). Both DIO and DR dams consuming HE diet had hepatic steatosis (P < 0.001) and exhibited reduced leptin sensitivity in the arcuate nucleus (P < 0.001). These data demonstrate that both diet and genetic obesity-proneness have consequences on maternal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...