Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 289, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103853

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease types A, A/B, and B is a progressive, life-limiting, autosomal recessive disorder caused by sphingomyelin phosphodiesterase 1 (SMPD1) gene mutations. There is a need to increase the understanding of morbidity and mortality across children to adults diagnosed with ASMD. METHODS: This observational retrospective survey analysed medical records of patients with ASMD with retrievable data from 27 hospitals in France, diagnosed/followed up between 1st January 1990 and 31st December 2020. Eligible records were abstracted to collect demographic, medical/developmental history, and mortality data. Survival outcomes were estimated from birth until death using Kaplan-Meier survival analyses; standardised mortality ratio (SMR) was also explored. RESULTS: A total of 118 medical records of patients with ASMD (type B [n = 94], type A [n = 15], and type A/B [n = 9]) were assessed. The majority of patients were males (63.6%); the median [range] age at diagnosis was 8.0 [1.0-18.0] months (type A), 1.0 [0-3] year (type A/B), and 5.5 [0-73] years (type B). Overall, 30 patients were deceased at the study completion date; the median [range] age at death for patients with ASMD type A (n = 14) was 1 [0-3.6] year, type A/B (n = 6) was 8.5 [3.0-30.9] years, and type B (n = 10) was 57.6 [3.4-74.1] years. The median [95% confidence interval (CI)] survival age from birth in patients with ASMD type A and type A/B was 2.0 [1.8-2.7] years and 11.4 [5.5-18.5] years, respectively. Survival analysis in ASMD type B was explored using SMR [95% CI] analysis (3.5 [1.6-5.9]), which showed that age-specific deaths in the ASMD type B population were 3.5 times more frequent than those in the general French population. The causes of death were mostly severe progressive neurodegeneration (type A: 16.7%), cancer (type B: 16.7%), or unspecified (across groups: 33.3%). CONCLUSIONS: This study illustrated a substantial burden of illness with high mortality rates in patients with ASMD, including adults with ASMD type B, in France.


Assuntos
Esfingomielina Fosfodiesterase , Humanos , Estudos Retrospectivos , Masculino , França/epidemiologia , Feminino , Lactente , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/metabolismo , Pré-Escolar , Criança , Adulto , Adolescente , Adulto Jovem , Doenças de Niemann-Pick/mortalidade , Pessoa de Meia-Idade
2.
Front Immunol ; 15: 1421432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136013

RESUMO

Introduction: Advanced cutaneous melanoma is a skin cancer characterized by a poor prognosis and high metastatic potential. During metastatic spread, melanoma cells often undergo dedifferentiation toward an invasive phenotype, resulting in reduced expression of microphthalmia-associated transcription factor (MITF)-dependent melanoma antigens and facilitating immune escape. Tumor Necrosis Factor (TNF) is known to be a key factor in melanoma dedifferentiation. Interestingly, accumulating evidence suggests that TNF may play a role in melanoma progression and resistance to immunotherapies. Additionally, TNF has been identified as a potent regulator of sphingolipid metabolism, which could contribute to melanoma aggressiveness and the process of melanoma dedifferentiation. Methods: We conducted RNA sequencing and mass spectrometry analyses to investigate TNF-induced dedifferentiation in two melanoma cell lines. In vitro experiments were performed to manipulate sphingolipid metabolism using genetic or pharmacologic alterations in combination with TNF treatment, aiming to elucidate the potential involvement of this metabolism in TNF-induced dedifferentiation. Lastly, to evaluate the clinical significance of our findings, we performed unsupervised analysis of plasma sphingolipid levels in 48 patients receiving treatment with immune checkpoint inhibitors, either alone or in combination with anti-TNF therapy. Results: Herein, we demonstrate that TNF-induced melanoma cell dedifferentiation is associated with a global modulation of sphingolipid metabolism. Specifically, TNF decreases the expression and activity of acid ceramidase (AC), encoded by the ASAH1 gene, while increasing the expression of glucosylceramide synthase (GCS), encoded by the UGCG gene. Remarkably, knockdown of AC alone via RNA interference is enough to induce melanoma cell dedifferentiation. Furthermore, treatment with Eliglustat, a GCS inhibitor, inhibits TNF-induced melanoma cell dedifferentiation. Lastly, analysis of plasma samples from patients treated with immune checkpoint inhibitors, with or without anti-TNF therapy, revealed significant predictive sphingolipids. Notably, the top 8 predictive sphingolipids, including glycosphingolipids, were associated with a poor response to immunotherapy. Discussion: Our study highlights that ceramide metabolism alterations are causally involved in TNF-induced melanoma cell dedifferentiation and suggests that the evolution of specific ceramide metabolites in plasma may be considered as predictive biomarkers of resistance to immunotherapy.


Assuntos
Desdiferenciação Celular , Ceramidas , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Melanoma , Fator de Necrose Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Melanoma/imunologia , Ceramidas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Masculino , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Esfingolipídeos/metabolismo , Ceramidase Ácida/metabolismo , Ceramidase Ácida/genética , Feminino , Pessoa de Meia-Idade , Idoso
3.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712143

RESUMO

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

4.
J Inherit Metab Dis ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706107

RESUMO

Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.

5.
Mol Genet Metab Rep ; 39: 101077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595987

RESUMO

Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.

6.
Bioorg Chem ; 146: 107295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513326

RESUMO

A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as ß-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in ß-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.


Assuntos
Doença de Gaucher , Imino Açúcares , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase , Pirrolidinas/farmacologia , Inibidores Enzimáticos/farmacologia
7.
Mol Nutr Food Res ; 68(1): e2300491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888831

RESUMO

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Caseínas/farmacologia , Fígado/metabolismo , Dieta Ocidental/efeitos adversos , Aminoácidos/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
8.
Cell Rep ; 42(12): 113586, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113139

RESUMO

Melanoma is the deadliest form of skin cancer due to its propensity to metastasize. It arises from melanocytes, which are attached to keratinocytes within the basal epidermis. Here, we hypothesize that, in addition to melanocyte-intrinsic modifications, dysregulation of keratinocyte functions could initiate early-stage melanoma cell invasion. We identified the lysolipid sphingosine 1-phosphate (S1P) as a tumor paracrine signal from melanoma cells that modifies the keratinocyte transcriptome and reduces their adhesive properties, leading to tumor invasion. Mechanistically, tumor cell-derived S1P reduced E-cadherin expression in keratinocytes via S1P receptor dependent Snail and Slug activation. All of these effects were blocked by S1P2/3 antagonists. Importantly, we showed that epidermal E-cadherin expression was inversely correlated with the expression of the S1P-producing enzyme in neighboring tumors and the Breslow thickness in patients with early-stage melanoma. These findings support the notion that E-cadherin loss in the epidermis initiates the metastatic cascade in melanoma.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Esfingolipídeos/metabolismo , Comunicação Parácrina , Queratinócitos/metabolismo , Caderinas/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo
10.
Orphanet J Rare Dis ; 18(1): 204, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480097

RESUMO

BACKGROUND: Niemann-Pick disease type C (NP-C) is a rare neurovisceral lysosomal lipid storage disease characterized by progressive neurodegeneration and premature death. While miglustat can stabilize neurological manifestations in later onset forms of NP-C, its efficacy in the early-infantile neurological form has not been demonstrated. In this observational retrospective study, we compared long-term neurodevelopmental outcome and survival between an untreated and a treated group of early infantile NP-C patients. METHODS: Data available on all NP-C patients with early infantile neurological onset diagnosed in France between 1990 and 2013 were compiled. Patients with incomplete data or who had died from a systemic perinatal, rapidly fatal form were excluded. RESULTS: Ten patients were included in the treated group (year of birth: 2006-2012), and 16 patients in the untreated group [born 1987-2005 (n = 15), 2012 (n = 1)]. The median age at neurological onset was 9 months (5-18) in the treated group, and 12 months (3-18) in the untreated group (p = 0.22). Miglustat therapy was started at a median age of 24.5 months (9-29) and median duration was 30 months (11-56). Gastrointestinal adverse events were reported in 7/10 patients on miglustat. All patients developed loss of psychomotor acquisitions or additional neurological symptoms despite miglustat therapy. The ages of developmental milestones and neurological involvement did not significantly differ between the two groups. Four patients in the untreated group were lost to follow up. The 22 remaining patients had died by the end of the study and no patient survived beyond the age of 7.4 years. The median survival age was 4.42 years in the untreated group and 5.56 years in the treated group; the Kaplan-Meier survival curves were not significantly different (log-rank test: p = 0.11). CONCLUSIONS: Miglustat allowed no significant long-term neurodevelopmental improvement nor significant increase of survival in patients with early infantile NP-C.


Assuntos
Doenças do Sistema Nervoso , Doença de Niemann-Pick Tipo C , Feminino , Gravidez , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Estudos Retrospectivos , 1-Desoxinojirimicina/uso terapêutico
11.
J Inherit Metab Dis ; 46(5): 972-981, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381921

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder associated with ß-galactosidase enzyme deficiency. There are three types of GM1 gangliosidosis based on age of symptom onset, which correlate with disease severity. In 2019, we performed a retrospective multicentric study including all patients diagnosed with GM1 gangliosidosis in France since 1998. We had access to data for 61 of the 88 patients diagnosed between 1998 and 2019. There were 41 patients with type 1 (symptom onset ≤6 months), 11 with type 2a (symptom onset from 7 months to 2 years), 5 with type 2b (symptom onset from 2 to 3 years), and 4 with type 3 (symptom onset >3 years). The estimated incidence in France was 1/210000. In patients with type 1, the first symptoms were hypotonia (26/41, 63%), dyspnea (7/41, 17%), and nystagmus (6/41, 15%), whereas in patients with type 2a, these were psychomotor regression (9/11, 82%) and seizures (3/11, 27%). In types 2b and 3, the initial symptoms were mild, such as speech difficulties, school difficulties, and progressive psychomotor regression. Hypotonia was observed in all patients, except type 3. The mean overall survival was 23 months (95% confidence interval [CI]: 7, 39) for type 1 and 9.1 years (95% CI: 4.5, 13.5) for type 2a. To the best of our knowledge, this is one of the largest historical cohorts reported, which provides important information on the evolution of all types of GM1 gangliosidosis. These data could be used as a historical cohort in studies assessing potential therapies for this rare genetic disease.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Humanos , Gangliosidose GM1/epidemiologia , Gangliosidose GM1/genética , Gangliosidose GM1/diagnóstico , beta-Galactosidase , Estudos Retrospectivos , Hipotonia Muscular
12.
Chemistry ; 29(53): e202301210, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37313991

RESUMO

The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes ß-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best ß-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase ß-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.


Assuntos
Dendrímeros , Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Inibidores Enzimáticos/metabolismo
13.
BMC Pediatr ; 23(1): 132, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949415

RESUMO

BACKGROUND: Craniopharyngioma is a rare condition in children, but it is the most frequent tumor that occurs in the hypothalamic pituitary region. Chemical meningitis has been described as an uncommon postoperative complication, but no chemical meningitis due to a spontaneous rupture leading to craniopharyngioma diagnosis in children has been reported. CASE PRESENTATION: This is a case of a 13-year-old boy presenting with fever, vomiting and headache for two days. The CT scan revealed a suprasellar lesion, and lumbar puncture showed aseptic meningitis. The cerebral MRI suggested a craniopharyngioma and the cerebrospinal fluid cholesterol concentration was abnormally high. A thorough medical history indicated some visual disturbance, which improved at the onset of meningitis, and an inflection of the growth curve. The anatomopathological analysis of the tumor confirmed the diagnosis of craniopharyngioma. CONCLUSIONS: This case is the first to report the discovery of a craniopharyngioma with meningoencephalitis caused by the rupture of a craniopharyngioma cyst in a child. Diagnosis was facilitated by determining the cholesterol level in the cerebrospinal fluid, as well as fine anamnesis to identify visual and growth disturbances.


Assuntos
Craniofaringioma , Meningite , Meningoencefalite , Neoplasias Hipofisárias , Masculino , Humanos , Criança , Adolescente , Craniofaringioma/diagnóstico , Craniofaringioma/diagnóstico por imagem , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/diagnóstico por imagem , Meningoencefalite/complicações , Colesterol
14.
Biomolecules ; 13(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830643

RESUMO

Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.


Assuntos
Lipogranulomatose de Farber , Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Camundongos , Animais , Humanos , Lipogranulomatose de Farber/genética , Ceramidas , Epilepsias Mioclônicas Progressivas/genética , Atrofia Muscular Espinal/genética , Mutação
15.
CRISPR J ; 6(1): 17-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629845

RESUMO

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Assuntos
Gangliosidose GM1 , Humanos , Gangliosidose GM1/terapia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Alelos
16.
Ann Clin Transl Neurol ; 9(12): 1941-1952, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325744

RESUMO

OBJECTIVE: The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS: Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS: The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C > T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A > C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION: This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells.


Assuntos
Ceramidase Ácida , Epilepsias Mioclônicas Progressivas , Humanos , Ceramidase Ácida/genética , Ceramidas , Estudos Retrospectivos , Epilepsias Mioclônicas Progressivas/genética
17.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230781

RESUMO

Sphingolipids play a key structural role in cellular membranes and/or act as signaling molecules. Inherited defects of their catabolism lead to lysosomal storage diseases called sphingolipidoses. Although progress has been made toward a better understanding of their pathophysiology, several issues still remain unsolved. In particular, whether lysosphingolipids, the deacylated form of sphingolipids, both of which accumulate in these diseases, are simple biomarkers or play an instrumental role is unclear. In the meanwhile, evidence has been provided for a high risk of developing malignancies in patients affected with Gaucher disease, the most common sphingolipidosis. This article aims at analyzing the potential involvement of lysosphingolipids in cancer. Knowledge about lysosphingolipids in the context of lysosomal storage diseases is summarized. Available data on the nature and prevalence of cancers in patients affected with sphingolipidoses are also reviewed. Then, studies investigating the biological effects of lysosphingolipids toward pro or antitumor pathways are discussed. Finally, original findings exploring the role of glucosylsphingosine in the development of melanoma are presented. While this lysosphingolipid may behave like a protumorigenic agent, further investigations in appropriate models are needed to elucidate the role of these peculiar lipids, not only in sphingolipidoses but also in malignant diseases in general.

18.
Cell Rep ; 39(10): 110910, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675775

RESUMO

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Assuntos
Lipólise , PPAR alfa , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hepatócitos/metabolismo , Corpos Cetônicos/metabolismo , Lipólise/fisiologia , PPAR alfa/metabolismo
19.
Clin Genet ; 101(4): 390-402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927718

RESUMO

Fabry disease (FD) is an X-linked genetic disease due to pathogenic variants in GLA. The phenotype varies depending on the GLA variant, alpha-galactosidase residual activity, patient's age and gender and, for females, X chromosome inactivation. Over 1000 variants have been identified, many through screening protocols more susceptible to disclose non-pathogenic variants or variants of unknown significance (VUS). This, together with the non-specificity of some FD symptoms, challenges physicians attempting to interpret GLA variants. The traditional way to interpreting pathogenicity is based on a combined approach using allele frequencies, genomic databases, global and disease-specific clinical databases, and in silico tools proposed by the American College of Medical Genetics and Genomics. Here, a panel of FD specialists convened to study how expertise may compare with the traditional approach. Several GLA VUS, highly controversial in the literature (p.Ser126Gly, p.Ala143Thr, p.Asp313Tyr), were re-analyzed through reviews of patients' charts. The same was done for pathogenic GLA variants with some specificities. Our data suggest that input of geneticists and physicians with wide expertise in disease phenotypes, prevalence, inheritance, biomarkers, alleles frequencies, disease-specific databases, and literature greatly contribute to a more accurate interpretation of the pathogenicity of variants, bringing a significant additional value over the traditional approach.


Assuntos
Doença de Fabry , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Doença de Fabry/patologia , Feminino , Frequência do Gene , Humanos , Mutação , Fenótipo , alfa-Galactosidase/genética
20.
Gut ; 71(4): 807-821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903148

RESUMO

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA