Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 678: 115-121, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37633181

RESUMO

Loss of hair cells can lead to irreversible sensorineural hearing loss. Therefore, hair cell preservation is critical for hearing. Mitochondrial derived peptides (MDPs) are bioactive peptides and prominent members of this family are humanin (HN) and the mitochondrial-open-reading frame of the twelve S c (MOTS-c). The protective roles of HN and MOTS-c in age-related diseases and in various tissues exposed to cellular stresses have been demonstrated. The involvement of MDPs in the inner ear remains to be investigated. Therefore, we determined the expression of rattin, the homolog of humanin, in inner ear tissues. Then, we found that HN and MOTS-c showed a significant protective effect on hair cells in organ of Corti explants exposed to gentamicin. Treatment with HN decreased gentamicin-induced phosphorylation of AKT, whereas treatment with MOTS-c increased phosphorylation of AMPKα in explants. Our data indicate that MDPs exert a protective function in gentamicin-induced hair cell damage. Therefore, MDPs may contribute to design new preventive strategies against hearing loss.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Protetoras , Substâncias Protetoras/farmacologia , Gentamicinas/efeitos adversos , Cabelo , Fatores de Transcrição
2.
PLoS One ; 15(9): e0239952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991625

RESUMO

Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.


Assuntos
Otite Média/genética , Fator de Transcrição STAT1/genética , Animais , Cóclea/patologia , Cóclea/fisiopatologia , Orelha Média/patologia , Orelha Média/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/deficiência
4.
Cell Death Discov ; 3: 17024, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580173

RESUMO

The process of gentamicin-induced hair cell damage includes the activation of oxidative stress processes. Sestrins, as stress-responsive proteins, protect cells against oxidative stress. Sestrins, particularly Sestrin-2, suppress excessive reactive oxygen species (ROS) accumulation and inhibit mammalian target of rapamycin complex 1 (mTORC1). Thus, we addressed the role of Sestrin-2 in the regulation of sensory hair cell survival after gentamicin exposure. Here, we show that Sestrins were expressed in the inner ear tissues, and Sestrin-2 immunolocalized in sensory hair cells and spiral ganglion (SG). The expression of Sestrin-2 was unchanged, and later downregulated, in gentamicin-treated explants from wild-type mice in vitro. Compared with wild-type mice, Sestrin-2 knockout mice exhibited significantly greater hair cell loss in gentamicin-treated cochlear explants. Significant downregulation of phosphorylation of AMP-activated protein kinase alpha (AMPKα) and upregulation of the 70-kDa ribosomal protein S6 kinase (p70S6K) were measured in wild-type cochlear explants exposed to gentamicin compared with their untreated controls. Such regulatory effect was not observed between explants from untreated and gentamicin-treated knockout mice. The gentamicin effect on mTOR signaling was rapamycin-sensitive. Thus, our data provide evidence that Sestrin-2 plays an important role in the protection of hair cells against gentamicin, and the mTOR signaling pathway appears to be modulated by gentamicin during hair cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...