Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 191: 106609, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838239

RESUMO

One of the strategies proposed for the neutralization of SARS-CoV-2 has been to synthetize small proteins able to act as a decoy towards the virus spike protein, preventing it from entering the host cells. In this work, the incorporation of one of these proteins, LCB1, within a spray-dried formulation for inhalation was investigated. A design of experiments approach was applied to investigate the optimal condition for the manufacturing of an inhalable powder. The lead formulation, containing 6% w/w of LCB1 as well as trehalose and L-leucine as excipients, preserved the physical stability of the protein and its ability to neutralize the virus. In addition, the powder had a fine particle fraction of 58.6% and a very high extra-fine particle fraction (31.3%) which could allow a peripheral deposition in the lung. The in vivo administration of the LCB1 inhalation powder showed no significant difference in the pharmacokinetic from the liquid formulation, indicating the rapid dissolution of the microparticles and the protein capability to translocate into the plasma. Moreover, LCB1 in plasma samples still maintained the ability to neutralize the virus. In conclusion, the optimized spray drying conditions allowed to obtain an inhalation powder able to preserve the protein biological activity, rendering it suitable for a systemic prevention of the viral infection via pulmonary administration.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Pós , SARS-CoV-2 , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Peptídeos/metabolismo , Pulmão/metabolismo , Inaladores de Pó Seco
2.
Antibiotics (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290107

RESUMO

Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the ß' subunit and the σ70 initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective. This involves three sequential assays, easily scalable to a high-throughput format, and a subsequent in-depth characterization only limited to hits that passed the three tests. This optimized workflow, applied to the screening of 5360 small molecules from three synthetic and natural compound libraries, led to the identification of six compounds interfering with the ß'-σ70 interaction, and thus was capable of inhibiting promoter-specific RNA transcription and bacterial growth. Upon supplementation with a permeability adjuvant, the two most potent transcription-inhibiting compounds displayed a strong antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) values among the lowest (0.87-1.56 µM) thus far reported for ß'-σ PPI inhibitors. The newly identified hit compounds share structural feature similarities with those of a pharmacophore model previously developed from known inhibitors.

3.
ACS Chem Biol ; 14(8): 1727-1736, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310497

RESUMO

Bacterial resistance represents a major health threat worldwide, and the development of new therapeutics, including innovative antibiotics, is urgently needed. We describe a discovery platform, centered on in silico screening and in vivo bioluminescence resonance energy transfer in yeast cells, for the identification of new antimicrobials that, by targeting the protein-protein interaction between the ß'-subunit and the initiation factor σ70 of bacterial RNA polymerase, inhibit holoenzyme assembly and promoter-specific transcription. Out of 34 000 candidate compounds, we identified seven hits capable of interfering with this interaction. Two derivatives of one of these hits proved to be effective in inhibiting transcription in vitro and growth of the Gram-positive pathogens Staphylococcus aureus and Listeria monocytogenes. Upon supplementation of a permeability adjuvant, one derivative also effectively inhibited Escherichia coli growth. On the basis of the chemical structures of these inhibitors, we generated a ligand-based pharmacophore model that will guide the rational discovery of increasingly effective antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Indóis/farmacologia , Fator sigma/antagonistas & inibidores , Antibacterianos/toxicidade , Bacillales/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Descoberta de Drogas , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Holoenzimas/metabolismo , Humanos , Indóis/toxicidade , Ligantes , Testes de Sensibilidade Microbiana , Estudo de Prova de Conceito , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Fator sigma/metabolismo
4.
Nat Ecol Evol ; 2(12): 1956-1965, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420746

RESUMO

Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Características de História de Vida , Micorrizas/genética , Simbiose , Ascomicetos/fisiologia , DNA Fúngico/análise , Micorrizas/fisiologia , Filogenia , Análise de Sequência de DNA
5.
Sci Rep ; 8(1): 13173, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158542

RESUMO

A correction to this article has been published and is linked from the HTML and the PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 7(1): 7628, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794466

RESUMO

An increasing number of esterases is being revealed by (meta) genomic sequencing projects, but few of them are functionally/structurally characterized, especially enzymes of fungal origin. Starting from a three-member gene family of secreted putative "lipases/esterases" preferentially expressed in the symbiotic phase of the mycorrhizal fungus Tuber melanosporum ("black truffle"), we show here that these enzymes (TmelEST1-3) are dimeric, heat-resistant carboxylesterases capable of hydrolyzing various short/medium chain p-nitrophenyl esters. TmelEST2 was the most active (kcat = 2302 s-1 for p-nitrophenyl-butyrate) and thermally stable (T50 = 68.3 °C), while TmelEST3 was the only one displaying some activity on tertiary alcohol esters. X-ray diffraction analysis of TmelEST2 revealed a classical α/ß hydrolase-fold structure, with a network of dimer-stabilizing intermolecular interactions typical of archaea esterases. The predicted structures of TmelEST1 and 3 are overall quite similar to that of TmelEST2 but with some important differences. Most notably, the much smaller volume of the substrate-binding pocket and the more acidic electrostatic surface profile of TmelEST1. This was also the only TmelEST capable of hydrolyzing feruloyl-esters, suggestinng a possible role in root cell-wall deconstruction during symbiosis establishment. In addition to their potential biotechnological interest, TmelESTs raise important questions regarding the evolutionary recruitment of archaea-like enzymes into mesophilic subterranean fungi such as truffles.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Micorrizas/enzimologia , Micorrizas/fisiologia , Simbiose , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Estabilidade Enzimática , Temperatura Alta , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Eletricidade Estática , Especificidade por Substrato , Difração de Raios X
7.
SLAS Discov ; 22(6): 751-759, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28346092

RESUMO

The bioluminescence resonance energy transfer (BRET) technology is a widely used live cell-based method for monitoring protein-protein interactions as well as conformational changes within proteins or molecular complexes. Considering the emergence of protein-protein interactions as a new promising class of therapeutic targets, we have adapted the BRET method in budding yeast. In this technical note, we describe the advantages of using this simple eukaryotic model rather than mammalian cells to perform high-throughput screening of chemical compound collections: genetic tractability, tolerance to solvent, rapidity, and no need of expensive robotic systems. Here, the HDM2/p53 interaction, related to cancer, is used to highlight the interest of this technology in yeast. Sharing the protocol of this BRET-based assay with the scientific community will extend its application to other protein-protein interactions, even though it is toxic for mammalian cells, in order to discover promising therapeutic candidates.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Descoberta de Drogas/métodos , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Mapeamento de Interação de Proteínas/métodos , Fluxo de Trabalho
8.
Nucleic Acids Res ; 45(8): 4493-4506, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28158860

RESUMO

Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/deficiência , Glucose/farmacologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Biogênese de Organelas , Regiões Promotoras Genéticas , Regulon , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Fungal Biol ; 121(3): 253-263, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28215352

RESUMO

Light is perceived and transduced by fungi, where it modulates processes as diverse as growth and morphogenesis, sexual development and secondary metabolism. A special case in point is that of fungi with a subterranean, light-shielded habitat such as Tuber spp. Using as reference the genome sequence of the black truffle Tuber melanosporum, we used bioinformatic prediction tools and expression data to gain insight on the photoreceptor systems of this hypogeous ectomycorrhizal fungus. These include a chromophore-less opsin, a putative red-light-sensing phytochrome not expressed at detectable levels in any of the examined lifecycle stages, and a nearly canonical two-component (WC-1/WC-2) photoreceptor system similar to the Neurospora white collar complex (WCC). Multiple evidence, including expression at relatively high levels in all lifecycle stages except for fruiting-bodies and the results of heterologous functional complementation experiments conducted in Neurospora, suggests that the Tuber WCC is likely functional and capable of responding to blue-light. The other putative T. melanosporum photoreceptor components, especially the chromophore-less opsin and the likely non-functional phytochrome, may instead represent signatures of adaptation to a hypogeous (light-shielded) lifestyle.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Fotorreceptores Microbianos/genética , Biologia Computacional
10.
Comput Struct Biotechnol J ; 14: 262-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27453771

RESUMO

Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome.

11.
Sci Rep ; 6: 25165, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121330

RESUMO

Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Genes Essenciais , Oxirredutases/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
New Phytol ; 189(3): 736-750, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21058951

RESUMO

• Developmental transitions associated with the life cycle of plant-symbiotic fungi, such as the ascomycete Tuber melanosporum, are likely to require an extensive reprogramming of gene expression brought about by transcription factors (TFs). To date, little is known about the transcriptome alterations that accompany developmental shifts associated with symbiosis or fruiting body formation. • Taking advantage of the black truffle genome sequence, we used a bioinformatic approach, coupled with functional analysis in yeast and transcriptome profiling, to identify and catalogue T. melanosporum TFs, the so-called 'regulome'. • The T. melanosporum regulome contains 102 homologs of previously characterized TFs, 57 homologs of hypothetical TFs, and 42 putative TFs apparently unique to Tuber. The yeast screen allowed the functional discovery of four TFs and the validation of about one-fifth of the in silico predicted TFs. Truffle proteins apparently unrelated to transcription were also identified as potential transcriptional regulators, together with a number of plant TFs. • Twenty-nine TFs, some of which associated with particular developmental stages, were found to be up-regulated in ECMs or fruiting bodies. About one-quarter of these up-regulated TFs are expressed at surprisingly high levels, thus pointing to a striking functional specialization of the different stages of the Tuber life cycle.


Assuntos
Ascomicetos/genética , Expressão Gênica , Genes Fúngicos , Genoma Fúngico , Micorrizas/genética , Fatores de Transcrição/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Biologia Computacional , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Simbiose/genética , Fatores de Transcrição/metabolismo , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...