Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310021

RESUMO

Organs-on-chips (OoCs) hold promise to engineer progressively more human-relevant in vitro models for pharmaceutical purposes. Recent developments have delivered increasingly sophisticated designs, yet OoCs still lack in reproducing the inner tissue physiology required to fully resemble the native human body. This review emphasizes the need to include microarchitectural and microstructural features, and discusses promising avenues to incorporate well-defined microarchitectures down to the single-cell level. We highlight how their integration will significantly contribute to the advancement of the field towards highly organized structural and hierarchical tissues-on-chip. We discuss the combination of state-of-the-art micropatterning technologies to achieve OoCs resembling human-intrinsic complexity. It is anticipated that these innovations will yield significant advances in realization of the next generation of OoC models.

2.
Bioeng Transl Med ; 9(1): e10614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193127

RESUMO

In articular cartilage (AC), the collagen arcades provide the tissue with its extraordinary mechanical properties. As these structures cannot be restored once damaged, functional restoration of AC defects remains a major challenge. We report that the use of a converged bioprinted, osteochondral implant, based on a gelatin methacryloyl cartilage phase, reinforced with precisely patterned melt electrowritten polycaprolactone micrometer-scale fibers in a zonal fashion, inspired by native collagen architecture, can provide long-term mechanically stable neo-tissue in an orthotopic large animal model. The design of this novel implant was achieved via state-of-the-art converging of extrusion-based ceramic printing, melt electrowriting, and extrusion-based bioprinting. Interestingly, the cell-free implants, used as a control in this study, showed abundant cell ingrowth and similar favorable results as the cell-containing implants. Our findings underscore the hypothesis that mechanical stability is more determining for the successful survival of the implant than the presence of cells and pre-cultured extracellular matrix. This observation is of great translational importance and highlights the aptness of advanced 3D (bio)fabrication technologies for functional tissue restoration in the harsh articular joint mechanical environment.

3.
Mater Today Bio ; 24: 100879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130429

RESUMO

Non-destructive assessments are required for the quality control of tissue-engineered constructs and the optimization of the tissue culture process. Near-infrared (NIR) spectroscopy coupled with machine learning (ML) provides a promising approach for such assessment. However, due to its nonspecific nature, each spectrum incorporates information on both neotissue and non-neotissue constituents of the construct; the effect of these constituents on the NIR-based assessments of tissue-engineered constructs has been overlooked in previous studies. This study investigates the effect of scaffolds, growth factors, and buffers on NIR-based assessments of tissue-engineered constructs. To determine if these non-neotissue constituents have a measurable effect on the NIR spectra of the constructs that can introduce bias in their assessment, nine ML algorithms were evaluated in classifying the NIR spectra of engineered cartilage according to the scaffold used to prepare the constructs, the growth factors added to the culture media, and the buffers used for storing the constructs. The effect of controlling for these constituents was also evaluated using controlled and uncontrolled NIR-based ML models for predicting tissue maturity as an example of neotissue-related properties of interest. Samples used in this study were prepared using norbornene-modified hyaluronic acid scaffolds with or without the conjugation of an N-cadherin mimetic peptide. Selected samples were supplemented with transforming growth factor-beta1 or bone morphogenetic protein-9 growth factor. Some samples were frozen in cell lysis buffer, while the remaining samples were frozen in PBS until required for NIR analysis. The ML models for classifying the spectra of the constructs according to the four constituents exhibited high to fair performances, with F1 scores ranging from 0.9 to 0.52. Moreover, controlling for the four constituents significantly improved the performance of the models for predicting tissue maturity, with improvement in F1 scores ranging from 0.09 to 0.77. In conclusion, non-neotissue constituents have measurable effects on the NIR spectra of tissue-engineered constructs that can be detected by ML algorithms and introduce bias in the assessment of the constructs by NIR spectroscopy. Therefore, controlling for these constituents is necessary for reliable NIR-based assessments of tissue-engineered constructs.

4.
Elife ; 122023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009703

RESUMO

During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.


Assuntos
Cartilagem Articular , Mamíferos , Animais , Matriz Extracelular , Pele
5.
MRS Commun ; 13(5): 764-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901477

RESUMO

Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds. Departing from established sequential fabrication methods like stereolithography or digital light printing, volumetric additive manufacturing offers new opportunities for the materials that can be used for printing. These include viscous acrylates and elastomers, epoxies (and orthogonal epoxy-acrylate formulations with spatially controlled stiffness) formulations, tunable stiffness thiol-enes and shape memory foams, polymer derived ceramics, silica-nanocomposite based glass, and gelatin-based hydrogels for cell-laden biofabrication. Here we review these materials, highlight the challenges to adapt them to volumetric additive manufacturing, and discuss the perspectives they present. Supplementary Information: The online version contains supplementary material available at10.1557/s43579-023-00447-x.

6.
Adv Mater Technol ; 8(15)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37811162

RESUMO

Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 µm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 µm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.

7.
J Orthop Translat ; 41: 42-53, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37691639

RESUMO

Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods: Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results: A lower DoF of GelMA did not affect cell migration in vitro (p â€‹= â€‹0.390) and led to a higher migration score ex vivo (p â€‹< â€‹0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p â€‹= â€‹0.031) and ex vivo (p â€‹< â€‹0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p â€‹< â€‹0.001). Conclusion: The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used.The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.

8.
Mater Today Bio ; 22: 100775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674778

RESUMO

Herein we show an accessible technique based on Faraday waves that assist the rapid assembly of osteoinductive ß-Tricalcium phosphate (ß-TCP) particles as well as human osteoblast pre-assembled in spheroids. The hydrodynamic forces originating at 'seabed' of the assembly chamber can be used to tightly aggregate inorganic and biological entities at packing densities that resemble those of native tissues. Additionally, following a layer-by-layer assembly procedure, centimeter scaled osteoinductive three-dimensional and cellularized constructs have been fabricated. We showed that the intimate connection between biological building blocks is essential in engineering living system able of localized mineral deposition. Our results demonstrate, for the first time, the possibility to obtain three-dimensional cellularized and acellularized anisotropic constructs using Faraday waves.

9.
J Control Release ; 360: 747-758, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451546

RESUMO

Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis.


Assuntos
Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Bevacizumab , Fator A de Crescimento do Endotélio Vascular/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neovascularização Patológica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Colágeno , Impressão Tridimensional
10.
Int J Bioprint ; 9(5): 775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457945

RESUMO

The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.

11.
Adv Mater ; 35(36): e2301673, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269532

RESUMO

In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.


Assuntos
Bioimpressão , Microgéis , Engenharia Tecidual/métodos , Hidrogéis , Bioimpressão/métodos , Impressão Tridimensional , Alicerces Teciduais
12.
Adv Healthc Mater ; 12(23): e2300443, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353904

RESUMO

3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future.


Assuntos
Bioimpressão , Radiação Cósmica , Voo Espacial , Ausência de Peso , Humanos , Impressão Tridimensional
13.
Adv Mater ; 35(32): e2300756, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099802

RESUMO

Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Hidrogéis/química , Impressão Tridimensional , Bioimpressão/métodos
14.
Biofabrication ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723633

RESUMO

The integration of light-driven technologies into biofabrication has revolutionized the field of tissue engineering and regenerative medicine, with numerous breakthroughs in the last few years. Light-based bioprinting approaches (lithography, multiphoton and volumetric bioprinting) have shown the potential to fabricate large scale tissue engineering constructs of high resolution, with great flexibility and control over the cellular organization. Given the unprecedented degree of freedom in fabricating convoluted structures, key challenges in regenerative medicine, such as introducing complex channels and pre-vascular networks in 3D constructs have also been addressed. Light has also been proven as a powerful tool, leading to novel photo-chemistry in designing bioinks, but also able to impart spatial-temporal control over cellular functions through photo-responsive chemistry. For instance, smart constructs able to undergo remotely controlled shape changes, stiffening, softening and degradation can be produced. The non-invasive nature of light stimulation also enables to trigger such responses post-fabrication, during the maturation phase of a construct. Such unique ability can be used to mimic the dynamic processes occurring in tissue regeneration, as well as in disease progression and degenerative processes in vivo. Bringing together these novel multidisciplinary expertise, the present Special Issue aims to discuss the most recent trends, strategies and novel light-based technologies in the field of biofabrication. These include: 1) using light-based bioprinting to develop in vitro models for drug screening, developmental biology models, disease models, and also functional tissues for implantation; 2) novel light-based biofabrication technologies; 3) development of new photo-responsive bioinks or biomaterial inks.


Assuntos
Bioimpressão , Engenharia Tecidual , Medicina Regenerativa , Materiais Biocompatíveis , Tecnologia , Impressão Tridimensional , Alicerces Teciduais/química
15.
Trends Biotechnol ; 41(5): 604-614, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513545

RESUMO

Bioprinting aims to produce 3D structures from which embedded cells can receive mechanical and chemical stimuli that influence their behavior, direct their organization and migration, and promote differentiation, in a similar way to what happens within the native extracellular matrix. However, limited spatial resolution has been a bottleneck for conventional 3D bioprinting approaches. Reproducing fine features at the cellular scale, while maintaining a reasonable printing volume, is necessary to enable the biofabrication of more complex and functional tissue and organ models. In this opinion article we recount the emergence of, and discuss the most promising, high-definition (HD) bioprinting techniques to achieve this goal, discussing which obstacles remain to be overcome, and which applications are envisioned in the tissue engineering field.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Matriz Extracelular , Diferenciação Celular , Alicerces Teciduais/química
16.
Acta Biomater ; 156: 250-268, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041651

RESUMO

The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm3) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.


Assuntos
Bioimpressão , Substitutos Ósseos , Humanos , Engenharia Tecidual/métodos , Osso e Ossos , Impressão Tridimensional , Tecnologia , Alicerces Teciduais/química , Bioimpressão/métodos
17.
iScience ; 25(9): 104979, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105583

RESUMO

Remaining challenges in auricular cartilage tissue engineering include acquiring sufficient amounts of regeneration-competent cells and subsequent production of high-quality neocartilage. Progenitor cells are a resident subpopulation of native cartilage, displaying a high proliferative and cartilage-forming capacity, yet their potential for regenerative medicine is vastly understudied. In this study, human auricular cartilage progenitor cells were newly identified in healthy cartilage and, importantly, in microtia-impaired chondral remnants. Their cartilage repair potential was assessed via in vitro 3D culture upon encapsulation in a gelatin-based hydrogel, and subsequent biochemical, mechanical, and histological analyses. Auricular cartilage progenitor cells demonstrate a potent ability to proliferate without losing their multipotent differentiation ability and to produce cartilage-like matrix in 3D culture. As these cells can be easily obtained through a non-deforming biopsy of the healthy ear or from the otherwise redundant microtia remnant, they can provide an important solution for long-existing challenges in auricular cartilage tissue engineering.

18.
Biofabrication ; 14(3)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35354130

RESUMO

Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material three-dimensional (3D) bioprinting strategies have the potential to resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge to date. In this study, we developed endothelial cell-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM), respectively. Human umbilical vein endothelial cell (HUVEC)-driven capillary networks started to form 2 d after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29%, and the number of microvessel junctions by 37% after 14 d, compared to bioinks with pro-angiogenic col-1 MFs. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a gellan gum microgel suspension bath. These 3D meniscus-like constructs were cultured up to 14 d, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications includingin vitromodels of vascular-to-avascular tissue interfaces, cancer progression, and for testing anti-angiogenic therapies.


Assuntos
Bioimpressão , Engenharia Tecidual , Bioimpressão/métodos , Cartilagem , Matriz Extracelular , Células Endoteliais da Veia Umbilical Humana , Humanos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
19.
Adv Mater ; 34(15): e2110054, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35166410

RESUMO

Organ- and tissue-level biological functions are intimately linked to microscale cell-cell interactions and to the overarching tissue architecture. Together, biofabrication and organoid technologies offer the unique potential to engineer multi-scale living constructs, with cellular microenvironments formed by stem cell self-assembled structures embedded in customizable bioprinted geometries. This study introduces the volumetric bioprinting of complex organoid-laden constructs, which capture key functions of the human liver. Volumetric bioprinting via optical tomography shapes organoid-laden gelatin hydrogels into complex centimeter-scale 3D structures in under 20 s. Optically tuned bioresins enable refractive index matching of specific intracellular structures, countering the disruptive impact of cell-mediated light scattering on printing resolution. This layerless, nozzle-free technique poses no harmful mechanical stresses on organoids, resulting in superior viability and morphology preservation post-printing. Bioprinted organoids undergo hepatocytic differentiation showing albumin synthesis, liver-specific enzyme activity, and remarkably acquired native-like polarization. Organoids embedded within low stiffness gelatins (<2 kPa) are bioprinted into mathematically defined lattices with varying degrees of pore network tortuosity, and cultured under perfusion. These structures act as metabolic biofactories in which liver-specific ammonia detoxification can be enhanced by the architectural profile of the constructs. This technology opens up new possibilities for regenerative medicine and personalized drug testing.


Assuntos
Bioimpressão , Bioimpressão/métodos , Gelatina/química , Humanos , Hidrogéis/química , Fígado , Organoides/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
20.
NPJ Regen Med ; 7(1): 2, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013329

RESUMO

Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...