Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 203, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697305

RESUMO

BACKGROUND: Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS: Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS: We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.


Assuntos
Gammaproteobacteria , Microbiota , Sulfato de Cálcio , Canadá , Microbiota/genética , Oxigênio , Sulfatos
2.
J Geophys Res Planets ; 127(11): e2022JE007194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36582809

RESUMO

Nearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.

3.
Astrobiology ; 21(5): 613-627, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33794669

RESUMO

Martian lava tube caves resulting from a time when the planet was still volcanically active are proposed to contain deposits of water ice, a feature that may increase microbial habitability. In this study, we taxonomically characterized and directly measured metabolic activity of the microbial communities that inhabit lava tube ice from Lava Beds National Monument, an analogue environment to martian lava tubes. We investigated whether this environment was habitable to microorganisms by determining their taxonomic diversity, metabolic activity, and viability using both culture-dependent and culture-independent techniques. With 16S rRNA gene sequencing, we recovered 27 distinct phyla from both ice and ice-rock interface samples, primarily consisting of Actinobacteria, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi. Radiorespiration and Biolog EcoPlate assays found these microbial communities to be metabolically active at both 5°C and -5°C and able to metabolize diverse sets of heterotrophic carbon substrates at each temperature. Viable cells were predominantly cold adapted and capable of growth at 5°C (1.3 × 104 to 2.9 × 107 cells/mL), and 24 of 38 cultured isolates were capable of growth at -5°C. Furthermore, 14 of these cultured isolates, and 16 of the 20 most numerous amplicon sequences we recovered were most closely related to isolates and sequences obtained from other cryophilic environments. Given these results, lava tube ice appears to be a habitable environment, and considering the protections martian lava tubes offer to microbial communities from harsh surface conditions, similar martian caves containing ice may be capable of supporting extant, active microbial communities.


Assuntos
Marte , Microbiota , Cavernas , Meio Ambiente Extraterreno , Gelo , Microbiota/genética , RNA Ribossômico 16S/genética
4.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335163

RESUMO

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Ciclo do Carbono , Planeta Terra , Compostos Férricos/análise , Minerais/análise , Ciclo do Nitrogênio , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...